Answer:
CH4 + 2 O2 → CO2 + 2 H2O
Explanation:
There are one mole of O2 on the left side and on the right side there are three moles of O2. And to fix it you would need to make it two moles of O2 to have four molecules of O2 on the left side. Then you would make two moles of H2O to have a total of four moles of O2 on the right. Therefore, CH4 + 2 O2 → CO2 + 2 H2O is the answer.
Answer:
Therefore the equilibrium number of vacancies per unit cubic meter =2.34×10²⁴ vacancies/ mole
Explanation:
The equilibrium number of of vacancies is denoted by
.
It is depends on
- total no. of atomic number(N)
- energy required for vacancy
- Boltzmann's constant (k)= 8.62×10⁻⁵ev K⁻¹
- temperature (T).

To find equilibrium number of of vacancies we have find N.

Here ρ= 8.45 g/cm³ =8.45 ×10⁶m³
= Avogadro Number = 6.023×10²³
= 63.5 g/mole

g/mole
Here
=0.9 ev/atom , T= 1000k
Therefore the equilibrium number of vacancies per unit cubic meter,

=2.34×10²⁴ vacancies/ mole
Answer:

Explanation:
A covalent bond involves the sharing of electrons to make the atoms more stable, and so they satisfy the Octet Rule (8 valence electrons).
Typically each atom contributes an electron to form an electron pair. This is a single bond. There are also double bonds (two pairs of electrons), triple bonds (three pairs of electrons), and coordinate covalent bonds.
Sometimes, to satisfy the Octet Rule and achieve stability, one atom contributes both of the electrons in an electron pair. This is different from other covalent bonds because usually each of the 2 atoms contributes an electron to make a pair.
Answer:
Empirical formula is C3H3O
Molecular formula C9H9O3
Explanation:
From the question given, we obtained the following data:
Carbon = 63.15%
Hydrogen = 5.30%
Oxygen = 31.55%
We can obtain the empirical and molecular formula by doing the following as illustrated in the attached file. Please see attachment for explanation.
Not sure what you are asking. I have two possible answers though...
It could either be more negatively charged, or valence electrons.
The more away from the nucleus a electron is, the more negatively charged it is.
The electrons on the outermost electron shell is valence electrons.
Again, I don't know what you were asking, but one of these answers may be correct.