Answer:
Option C= A hydrogen bond formed between a polar side chain and a hydrophobic side chain.
Explanation:
All three given options a, b and d have common mechanism to accommodate the polar amino acid.
A= A hydrogen bond forms between two polar side chains.
B= A hydrogen bond from between a polar side chain and protein back bone.
D = hydrogen bond form between polar side chains and a buried water molecules.
All these are use to accommodate the polar amino acid.
While option C is not used. which is:
A hydrogen bond formed between a polar side chain and a hydrophobic side chain.
To convert from Kp to Kc, you need this formula---> Kp= Kc (RT)^Δn, where Δn= gas moles of product- gas moles of reactants. since you did not give a reaction formula, I can't calculate Δn. but all once you find it out. just plug it.
Kp= Kc (RT)^Δn------------------> Kc= Kp/[(RT)^Δn]
Kp= 5.23
R= 0.0821
T= 191 C= 464 K
Δn= ?
Kc= 5.23/ (0.0821 x 464)^Δn= ???
V1 = 2.00 L
<span>T1 = 25 + 273 = 298 K </span>
<span>V2 = 6.00 L </span>
<span>T2 = ? </span>
<span>Assuming the pressure is to remain constant, then </span>
<span>V1/T1 = V2/T2 </span>
<span>T2 = T1V2/V1 = (298)(6)/(2) = 894 deg K</span>