Answer:
- Last choice: <em><u>- 3.72°C</u></em>
Explanation:
The freezing point depression in a solvent is a colligative property: it depends on the number of solute particles.
The equation to predict the freezing point depression in a solvent is:
Where,
- ΔTf is the freezing point depression of the solvent,
- Kf is the cryoscopic molal constant of the solvent, and i is the Van'f Hoff factor, which is the number of ions produced by each unit formula of the ionic compound.
The calcualtions are in the attached pdf file. Please, open it by clicking on the image of the file.
 
        
             
        
        
        
The best answer that I can give you is, the Plate.
        
             
        
        
        
First we have to find moles of C:
Molar mass of CO2:
12*1+16*2 = 44g/mol
(18.8 g CO2) / (44.00964 g CO2/mol) x (1 mol C/ 1 mol CO2) =0.427 mol C 
Molar mass of H2O:
2*1+16 = 18g/mol
As there is 2 moles of H in H2O,
So,
<span>(6.75 g H2O) / (18.01532 g H2O/mol) x (2 mol H / 1 mol H2O) = 0.74mol H </span>
<span>Divide both number of moles by the smaller number of moles: </span>
<span>As Smaaler no moles is 0.427:
So,
Dividing both number os moles by 0.427 :
(0.427 mol C) / 0.427 = 1.000 </span>
<span>(0.74 mol H) / 0.427 = 1.733 </span>
<span>To achieve integer coefficients, multiply by 2, then round to the nearest whole numbers to find the empirical formula: 
C = 1 * 2 = 2
H = 1.733 * 2 =3.466
So , the empirical formula is C2H3</span>
        
                    
             
        
        
        
Explanation:
Since mole ratio of O2 : NH3 = 7 : 4,
Volume of NH3 = 50dm³ * 4/7 = 28.57dm³.
 
        
             
        
        
        
Sun isn't actually planet but star. Really big ball made of gases. Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%). Sun is the biggest object in our Solar System. It's 99.86% of the total mass of the Solar System. 
... wikipedia is really grat if you have questions like that ;)