Given the balanced equation:
( Reaction type : double replacement)
CaF2 + H2SO4 → CaSO4 + 2HFI
We can determine the number of grams prepared from the quantity of 75.0 H2SO4, and 63.0g of CaF2 by converting these grams to moles per substance.
This can be done by evaluating the atomic mass of each element of the substance, and totaling it to find the molecular mass.
For H2SO4 or hydrogen sulfate it's molecular mass is the sum of the quantity of atomic mass per element. H×2 + S×1 + O×4 = ≈1.01×2 + ≈32.06×1 + ≈16×4 = 2.02 + 32.06 + 64 = 98.08 u (Dalton's or Da) or g / mol.
For CaF2 or calcium fluoride, it's molecular mass adds 1 atomic mass of calcium and 2 atomic masses of fluoride due to the number of atoms.
Ca×1 + F×2 = ≈40.07×1 + ≈19×2 = 40.08 + 38 = 78.07 u (Da or Dalton's) or g / mol.
Hi :)
20 mol NH3 x 6 H2O/4 NH3 = 30 mol H2O
Hope this helped :)
The HNO3 is considered to be a Bronsted - Lowry acid, when this substance 'HNO3', will donate a proton, then it will form another substance. It will form two substances when the proton is donated in the water molecule. The two substances that will be formed is a nitrate iron and a hydronium ion.
IT is called Iron(iii)oxide
Answer:
The furnace releases 1757280 J
Explanation:
We will do the conversion on two steps:
1- convert the kcal to cal
2- convert the cal to J
Step 1: converting kcal to cal
1 kcal is equivalent to 1000 cal. Therefore:
420 kcal is equivalent to 420*1000 = 420000 cal
Step 2: converting cal to J
We are given that:
<span>1 cal = 4.184 J
</span>Therefore:
420000 cal is equivalent to 420000 * 4.184 = 1757280 J
Hope this helps :)