Answer:
2%
Explanation:
.98 is 98% of one and therefore they are missing 2%
Answer:
The answer to your question is
1.-Fe₂O₃
2.- 280 g
3.- 330 g
Explanation:
Data
mass of CO = 224 g
mass of Fe₂O₃ = 400 g
mass of Fe = ?
mass of CO₂
Balanced chemical reaction
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
1.- Calculate the molar mass of Fe₂O₃ and CO
Fe₂O₃ = (56 x 2) + (16 x 3) = 160 g
CO = 12 + 16 = 28 g
2.- Calculate the proportions
theoretical proportion Fe₂O₃ /3CO = 160/84 = 1.90
experimental proportion Fe₂O₃ / CO = 400/224 = 1.78
As the experimental proportion is lower than the theoretical, we conclude that the Fe₂O₃ is the limiting reactant.
3.- 160 g of Fe₂O₃ --------------- 2(56) g of Fe
400 g of Fe₂O₃ --------------- x
x = (400 x 112) / 160
x = 280 g of Fe
4.- 160 g of Fe₂O₃ --------------- 3(44) g of CO₂
400 g of Fe₂O₃ -------------- x
x = (400 x 132)/160
x = 330 gr
<span>Answer: B. Ionic solids have higher melting points than molecular solids.
</span>
This is because the rest are false, as solids are able to melt, and do have melting points. Also, not all solids have the same melting points.
Strength of the magnetic field can be increased by:
1) increasing the current in the coil.
2) increasing the number of coils in the solenoid; and.
3) using a soft iron core within the solenoid.
Hope this helps!
Answer:
A) 2.69 M
B) 0.059
Explanation:
A) We have:
33.8% solute by mass= 33.8 g solute/100 g solution
molarity = mol solute/ 1 L solution
molarity=
x
x
x 
molarity= 2.69 mol solute/L solution = 2.69 M
B) We know that there are 33.8 g of solute in 100 g of solution.
As the total solution is compounded by solute+solvent (in this case, solvent is water), the mass of water is the difference between the mass of the total solution and the mass of solute:
mass of water= 100 g - 33.8 g = 66.2 g
Now, we calculate the number of mol of both solute and water:
mol solute= 33.8 g solute x
= 0.232 mol
mol H20= 66.2 g H₂O x 
Finally, the mol fraction of solute (Xsolute) is calculated as follows:
Xsolute=
Xsolute= 0.059