Answer:
glycerol, pyruvate, glycerol -3-phosphate, dihydroxyacetone phosphate and glucose♡ hope this helps♡
Answer:
The answer to your question is Molarity = 0.41
Explanation:
Data
mass of KNO₃ = 76.6 g
volume = 1.84 l
density = 1.05 g/ml
Process
1.- Calculate the molecular mass of KNO₃
molecular mass = 39 + 14 + (16 x 3) = 101 g
2.- Calculate the number of moles
101 g of KNO₃ --------------- 1 mol
76.6 g of KNO₃ ------------ x
x = (76.6 x 1) / 101
x = 0.76 moles
3.- Calculate molarity
Molarity = 
Substitution
Molarity = 
Result
Molarity = 0.41
If X is an equivalent base to H₂O
HX is an equivalent acid to H₃O⁺
HX is a stronger acid than H₃O⁺
HX is not an acid
X⁻ is a stronger base than H₂O
HX is a weaker acid than H₃O⁺
X⁻ is a weaker base than H₂O
X⁻ is not a base.
The correct response or this is
X⁻ is a stronger base than H₂O
HX is a weaker acid than H₃O⁺
Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.
Answer:
I think that it is A I am sorry if I am wrong
Explanation: