Answer:
the acceleration is reduced by gravity
a = (15 / .35) - [9.8 * sin(65º)]
Explanation:
break the launch vector into two components, vertical and horizontal
Force Net Vertical=-9.8*.350+15cos65 N
force net horizonal=15sin65
initial acceleration= force/mass= (-9.8+15/.350*cos65)j+(15/.350*sin65)i
using i,j vectors..
Explanation:
Given that,
Linear speed of both disks is 5 m/s
Mass of disk 1 is 10 kg
Radius of disk 1 is 35 cm or 0.35 m
Mass of disk 2 is 3 kg
Radius of disk 2 is 7 cm or 0.07 m
(a) The angular velocity of disk 1 is :

(b) The angular velocity of disk 2 is :

(c) The moment of inertia for the two disk system is given by :

Hence, this is the required solution.
V=wave velocity , <span>f= frequency, </span><span>λ=wavelength </span>
<span>Use it to find corresponding wavelengths for</span><span> f=28 Hz </span>
<span>λ= v/f= 337/28=12.036 m
</span>
<span>for f=4200 Hz </span>
<span>λ= v/f=337/4200= 0.08 m </span>
<span>So max. wavelength is 12.036 m and </span>
<span>Min Wavelength is 0.08 m </span>
<span>So the range is between .08 m and 12.036 m
</span>Hope this helps.
Answer:
The mass of the block, M =T/(3a +g) Kg
Explanation:
Given,
The upward acceleration of the block a = 3a
The constant force acting on the block, F₀ = Ma = 3Ma
The mass of the block, M = ?
In an Atwood's machine, the upward force of the block is given by the relation
Ma = T - Mg
M x 3a = T - Ma
3Ma + Mg = T
M = T/(3a +g) Kg
Where 'T' is the tension of the string.
Hence, the mass of the block in Atwood's machine is, M = T/(3a +g) Kg
Answer:
Hi myself Shrushtee
Explanation:
Neutral carbon-12 (or any carbon atom) has 6 electrons with a total negative charge of 6e- orbiting a nucleus with a total positive charge of 6e+, so that the total net charge is zero. The nucleus is made up of 6 protons, each with a positive charge of e+, and 6 neutrons, each with zero charge.
please mark me as brainleist