Connection to Big Idea about energy: Gravity creates gravitational potential energy. Gravitational energy relies on the masses of two bodies and their distance.
Connection to Big Idea about the universe: Gravitational force is exerted by all objects with mass throughout the Universe. It is what keeps the Earth and the planets in orbit around the Sun, and our Solar System in orbit around the centre of the Milky Way. Gravity is one of the forces involved in the birth of stars, their evolution and finally their death.
Connection to Big Idea about Earth: The gravitational force is responsible for many physical properties of Earth and consequently it affects the existence and the properties of living creatures on it. For instance, the existence, the chemical composition and the structure of Earth’s atmosphere was determined by Earth’s gravitational force.
Answer: v = 
Explanation: q = magnitude of electronic charge = 
mass of an electronic charge =
V= potential difference = 4V
v = velocity of electron
by using the work- energy theorem which states that the kinetic energy of the the electron must equal the work done use in accelerating the electron.
kinetic energy =
, potential energy = qV
hence, 

If the coefficient of static friction is 0.3, then the minimum force required to get it moving is equal in magnitude to the maximum static friction that can hold the body in place.
By Newton's second law,
• the net vertical force is 0, since the body doesn't move up or down, and in particular
∑ <em>F</em> = <em>n</em> - <em>mg</em> = <em>n</em> - 50 N = 0 ==> <em>n</em> = 50 N
where <em>n</em> is the magnitude of the normal force; and
• the net horizontal force is also 0, since static friction keeps the body from moving, with
∑ <em>F</em> = <em>F'</em> - <em>f</em> = <em>F'</em> - <em>µn</em> = <em>F'</em> - 0.3 (50 N) = 0 ==> <em>F'</em> = 15 N
where <em>F'</em> is the magnitude of the applied force, <em>f</em> is the magnitude of static friction, and <em>µ</em> is the friction coefficient.
Answer:
2.Scientists discovered new evidence to support their theories.
3.Scientists discovered that old interpretations of data was incorrect.
4.Scientists used observations and mathematical data to solve problems in new ways.
Explanation: Here you go
Answer:
It only depends on the vertical component
Explanation:
Hello!
The horizontal component will tell you how much you travel in that direction.
You could have a large horizontal velocity, but if the vertical velocity is zero, you will never be out of the ground. Similarly, you could have a zero horizontal velocity, but if you have a non-zero vertical velocity you will be some time off the ground. This time can be calculated by two means, one is using the equation of motion (position as a function of time) and the other using the velocity as a fucntion of time.
For the former you must find the time when the position is zero.
Lets consider the origin of teh coordinate system at your feet
y(t) = vt - (1/2)gt^2
We are looking for a time t' for which y(t')=0
0 = vt' - (1/2)gt'^2
vt' = (1/2)gt'^2
The trivial solution is when t'=0 which is the initial position, however we are looking for t'≠0, therefore we can divide teh last equation by t'
v = (1/2)gt'
Solving for t'
t' = (2v/g)