1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
3 years ago
12

Quadrupling the power output from a speaker emitting a single frequency will result in what increase in loudness (in units of dB

)
Physics
1 answer:
Leviafan [203]3 years ago
6 0

Answer:

<em>6.02 dB increase  </em>

<em></em>

Explanation:

Let us take the initial power from the speaker P' = P Watt

then, the final power P = 4P Watt

for a given unit area, initial intensity (power per unit area) will be

I' = P Watt/m^2

and the final quadrupled sound will produce a sound intensity of

I = 4P Watt/m^2

Increase in loudness is gotten from the relation

ΔL =  10log_{10} \frac{I}{I'}

where

I = final sound intensity

I' = initial sound intensity

imputing values of the intensity into the equation, we have

==>  10log_{10} \frac{4P}{P} =  10log_{10} 4 = <em>6.02 dB increase  </em>

You might be interested in
Your own car has a mass of 2000 kg. If your car produces a force of 5000 N, how fast will it accelerate?
Sidana [21]

Answer:

2.5m/s²

Explanation:

Given parameters:

Mass of car  = 2000kg

Force produced by the car  = 5000N

Unknown:

Acceleration of the car  = ?

Solution:

According to Newton's second law of motion, Force is a product of mass and acceleration.

  Force  = mass x acceleration

Now, insert the parameters and find the unknown;

  5000 = 2000 x acceleration

   Acceleration  = \frac{5000}{2000}   = 2.5m/s²

7 0
3 years ago
How does distance between two objects affect their gravitational force?
EastWind [94]
Force decreases as distance increases
5 0
3 years ago
Read 2 more answers
An acorn falls from a tree. Its velocity just before it hits the ground is 28.2 m/s, downward. (acceleration of gravity is 9.81m
ss7ja [257]

Answer:

12.74 ms^-1 download

Explanation:

v=28.2, a=9.81

start from rest u=0

v=u+at=0+(9.81)t=28.2

t=2.875...

it reach 1.4 second before hitting the ground:

t=1.4, u=0, a=9.81

v=u+at=0+(9.81)(1.4)=12.74

7 0
3 years ago
1) A uniform wooden beam, with mass of 120 and length L = 4 m, is supported as illustrated in the figure. If the static friction
Kobotan [32]

Answer:

1(a) 55.0°

1(b) 58.3°

2(a) 10.2 N

2(b) 2.61 m/s²

3(a) 76.7°

3(b) 12.8 m/s

3(c) 3.41 s

3(d) 21.8 m/s

3(e) 18.5 m

4(a) 7.35 m/s²

4(b) 31.3 m/s²

4(c) 12.8 m/s²

Explanation:

1) Draw a free body diagram on the beam.  There are five forces:

Weight force mg pulling down at the center of the beam,

Normal force Na pushing up at point A,

Friction force Na μa pushing left at point A,

Normal force Nb pushing perpendicular to the incline at point B,

Friction force Nb μb pushing up the incline at point B.

There are 3 unknown variables: Na, Nb, and θ.  So we're going to need 3 equations.

Sum of forces in the x direction:

∑F = ma

-Na μa + Nb sin φ − Nb μb cos φ = 0

Nb (sin φ − μb cos φ) = Na μa

Nb / Na = μa / (sin φ − μb cos φ)

Sum of forces in the y direction:

∑F = ma

Na + Nb cos φ + Nb μb sin φ − mg = 0

Na = mg − Nb (cos φ + μb sin φ)

Sum of torques about point B:

∑τ = Iα

-mg (L/2) cos θ + Na L cos θ − Na μa L sin θ = 0

mg (L/2) cos θ = Na L cos θ − Na μa L sin θ

mg cos θ = 2 Na cos θ − 2 Na μa sin θ

mg = 2 Na − 2 Na μa tan θ

Substitute:

Na = 2 Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

0 = Na − 2 Na μa tan θ − Nb (cos φ + μb sin φ)

Na (1 − 2 μa tan θ) = Nb (cos φ + μb sin φ)

1 − 2 μa tan θ = (Nb / Na) (cos φ + μb sin φ)

2 μa tan θ = 1 − (Nb / Na) (cos φ + μb sin φ)

Substitute again:

2 μa tan θ = 1 − [μa / (sin φ − μb cos φ)] (cos φ + μb sin φ)

tan θ = 1/(2 μa) − (cos φ + μb sin φ) / (2 sin φ − 2 μb cos φ)

a) If φ = 70°, then θ = 55.0°.

b) If φ = 90°, then θ = 58.3°.

2) Draw a free body diagram of each mass.  For each mass, there are four forces.  For mass A:

Weight force Ma g pulling down,

Normal force Na pushing perpendicular to the incline,

Friction force Na μa pushing parallel down the incline,

Tension force T pulling parallel up the incline.

For mass B:

Weight force Mb g pulling down,

Normal force Nb pushing perpendicular to the incline,

Friction force Nb μb pushing parallel up the incline,

Tension force T pulling up the incline.

There are four unknown variables: Na, Nb, T, and a.  So we'll need four equations.

Sum of forces on A in the perpendicular direction:

∑F = ma

Na − Ma g cos θ = 0

Na = Ma g cos θ

Sum of forces on A up the incline:

∑F = ma

T − Na μa − Ma g sin θ = Ma a

T − Ma g cos θ μa − Ma g sin θ = Ma a

Sum of forces on B in the perpendicular direction:

∑F = ma

Nb − Mb g cos φ = 0

Nb = Mb g cos φ

Sum of forces on B down the incline:

∑F = ma

-T − Nb μb + Mb g sin φ = Mb a

-T − Mb g cos φ μb + Mb g sin φ = Mb a

Add together to eliminate T:

-Ma g cos θ μa − Ma g sin θ − Mb g cos φ μb + Mb g sin φ = Ma a + Mb a

g (-Ma (cos θ μa + sin θ) − Mb (cos φ μb − sin φ)) = (Ma + Mb) a

a = -g (Ma (cos θ μa + sin θ) + Mb (cos φ μb − sin φ)) / (Ma + Mb)

a = 2.61 m/s²

Plug into either equation to find T.

T = 10.2 N

3i) Given:

Δx = 3.7 m

vᵧ = 0 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

t = 1.25 s

Find: v₀ₓ, v₀ᵧ

Δx = v₀ₓ t + ½ aₓ t²

3.7 m = v₀ₓ (1.25 s) + ½ (0 m/s²) (1.25 s)²

v₀ₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

0 m/s = (-10 m/s²) (1.25 s) + v₀ᵧ

v₀ᵧ = 12.5 m/s

a) tan θ = v₀ᵧ / v₀ₓ

θ = 76.7°

b) v₀² = v₀ₓ² + v₀ᵧ²

v₀ = 12.8 m/s

3ii) Given:

Δx = D cos 57°

Δy = -D sin 57°

v₀ₓ = 2.96 m/s

v₀ᵧ = 12.5 m/s

aₓ = 0 m/s²

aᵧ = -10 m/s²

c) Find t

Δx = v₀ₓ t + ½ aₓ t²

D cos 57° = (2.96 m/s) t + ½ (0 m/s²) t²

D cos 57° = 2.96t

Δy = v₀ᵧ t + ½ aᵧ t²

-D sin 57° = (12.5 m/s) t + ½ (-10 m/s²) t²

-D sin 57° = 12.5t − 5t²

Divide:

-tan 57° = (12.5t − 5t²) / 2.96t

-4.558t = 12.5t − 5t²

0 = 17.058t  − 5t²

t = 3.41 s

d) Find v

vₓ = aₓt + v₀ₓ

vₓ = (0 m/s²) (3.41 s) + 2.96 m/s

vₓ = 2.96 m/s

vᵧ = aᵧt + v₀ᵧ

vᵧ = (-10 m/s²) (3.41 s) + 12.5 m/s

vᵧ = -21.6 m/s

v² = vₓ² + vᵧ²

v = 21.8 m/s

e) Find D.

D cos 57° = 2.96t

D = 18.5 m

4) Given:

R = 90 m

d = 140 m

v₀ = 0 m/s

at = 0.7t m/s²

The distance to the opposite side of the curve is:

140 m + (90 m) (π/2) = 281 m

a) Find Δx and v if t = 10.5 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (10.5)²

vt = 38.6 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (10.5)³

Δx = 135 m

The car has not yet reached the curve, so the acceleration is purely tangential.

at = 0.7 (10.5)

at = 7.35 m/s²

b) Find Δx and v if t = 12.2 s.

at = 0.7t

Integrate:

vt = 0.35t² + v₀

vt = 0.35 (12.2)²

vt = 52.1 m/s

Integrate again:

Δx = 0.1167 t³ + v₀ t + x₀

Δx = 0.1167 (12.2)³

Δx = 212 m

The car is in the curve, so it has both tangential and centripetal accelerations.

at = 0.7 (12.2)

at = 8.54 m/s²

ac = v² / r

ac = (52.1 m/s)² / (90 m)

ac = 30.2 m/s²

a² = at² + ac²

a = 31.3 m/s²

c) Given:

Δx = 187 m

v₀ = 0 m/s

at = 3 m/s²

Find: v

v² = v₀² + 2aΔx

v² = (0 m/s)² + 2 (3 m/s²) (187 m)

v = 33.5 m/s

ac = v² / r

ac = (33.5 m/s)² / 90 m

ac = 12.5 m/s²

a² = at² + ac²

a = 12.8 m/s²

5 0
3 years ago
(a) Find the acceleration of B.<br>(b) Find the tensions, T1 and T2, in the strings.
Ann [662]

i believ that the answer would be

the acceleration of B is 0.2

6 0
3 years ago
Other questions:
  • Jenny is sitting on a sled on the side of a hill inclined at 15°. What force is required to keep the sled from sliding down the
    7·1 answer
  • All atoms contain negatively charged ____________ that orbit around a positively charged nucleus.
    15·1 answer
  • Which is more work, pushing with 115 N over 15m or lifting 20N over 10 m?
    14·2 answers
  • The weight of an ice sheet can cause continental lithosphere to sink into the underlying asthenosphere due to ____.
    11·1 answer
  • 3. A model rocket is launched straight upward at 58.8 m/s.
    11·1 answer
  • Upper A 16​-foot ladder is leaning against a building. If the bottom of the ladder is sliding along the pavement directly away f
    13·1 answer
  • How to find the distance between two parallel lines?
    5·1 answer
  • A 2.16 x 10-2-kg block is resting on a horizontal frictionless surface and is attached to a horizontal spring whose spring const
    12·1 answer
  • Explain me the inertia of rest ?
    5·1 answer
  • Put the balloon near (BUT NOT TOUCHING) the wall. Leave about as much space as the width of your pinky finger between the balloo
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!