Answer:
The potential difference between the places is 0.3 V.
∴ 1st option i.e. 0.3V is the correct option.
Explanation:
Given
Work done W = 3J
Amount of Charge q = 10C
To determine
We need to determine the potential difference V between the places.
The potential difference between the two points can be determined using the formula
Potential Difference (V) = Work Done (W) / Amount of Charge (q)
or
substituting W = 3 and q = 10 in the formula
V
Therefore, the potential difference between the places is 0.3 V.
∴ 1st option i.e. 0.3V is the correct option.
Explanation:
Given data:
d = 30 mm = 0.03 m
L = 1m
S = 70 Mpa
Δd = -0.0001d
Axial force = ?
validity of elastic deformation assumption.
Solution:
O'₂ = Δd/d = (-0.0001d)/d = -0.0001
For copper,
v = 0.326 E = 119×10³ Mpa
O'₁ = O'₂/v = (-0.0001)/0.326 = 306×10⁶
∵δ = F.L/E.A and σ = F/A so,
σ = δ.E/L = O'₁ .E = (306×10⁻⁶).(119×10³) = 36.5 MPa
F = σ . A = (36.5 × 10⁻⁶) . (π/4 × (0.03)²) = 25800 KN
S = 70 MPa > σ = 36.5 MPa
∵ elastic deformation assumption is valid.
so the answer is
F = 25800 K N and S > σ
The formula for force exerted on/by a spring is
F = k*e where k is the spring constant and x is the distance stretched from
unstrained position. This should allow you to find what you need.
Using F = k x e,
where k is the spring constant,
and e is the extension,
The F is her weight = 45 X 0.80
= 36 N
Answer:
2.464 cm above the water surface
Explanation:
Recall that for the cube to float, means that the volume of water displaced weights the same as the weight of the block.
We calculate the weight of the block multiplying its density (0.78 gr/cm^3) times its volume (11.2^3 cm^3):
weight of the block = 0.78 * 11.2^3 gr
Now the displaced water will have a volume equal to the base of the cube (11.2 cm^2) times the part of the cube (x) that is under water. Recall as well that the density of water is 1 gr/cm^3.
So the weight of the volume of water displaced is:
weight of water = 1 * 11.2^2 * x
we make both weight expressions equal each other for the floating requirement:
0.78 * 11.2^3 = 11.2^2 * x
then x = 0.78 * 11.2 cm = 8.736 cm
This "x" is the portion of the cube under water. Then to estimate what is left of the cube above water, we subtract it from the cube's height (11.2 cm) as follows:
11.2 cm - 8.736 cm = 2.464 cm