Answer:
the result is the quantization of __Energy__ of the particle
Explanation:
Answer:
Power, P = 30 W
Explanation:
We have,
Voltage drop of a circuit is 60 V
Resistance of the resistor is 120 ohms
Current across the circuit is 0.5 A
It is required to find the power conducted by the resistor. Power conducted by a resistor is given by :

V and I are voltage and current

So, the power conducted by the resistor is 30 watts.
The process you're fishing for is "polarization", but that's a
misleading description.
Polarization doesn't do anything to change the light waves.
It simply filters out (absorbs, as with a polarizing filter) the
light waves that aren't vibrating in the desired plane, and
allows only those that are to pass.
The intensity of a light beam is always reduced after
polarizing it, because much (most) of the original light
has been removed.
A laser light source may be thought of as an exception,
since everything coming out of the laser is polarized.
Answer:
a)q= 2800 W/m²
b)To=59.4°C
Explanation:
Given that
L = 10 mm
K= 20 W/m·K
T=30°C
h= 100 W/m²K
Ti=58°C
a)
Heat flux q
q= h ΔT
q= 100 x (58 - 30 )
q= 2800 W/m²
b)
As we know that heat transfer by Fourier law given as
Q= K A ΔT/L
Lets take outer temperature is To
So by Fourier law
To= Ti + qL/K
Now by putting the values
To= Ti + qL/K

To=59.4°C