Answer:
468 m
Explanation:
So the building and the point where the laser hit the water surface make a right triangle. Let's call this triangle ABC where A is at the base of the building, B is at the top of the building, and C is where the laser hits the water surface. Similarly, the submarine, the projected submarine on the surface and the point where the laser hit the surface makes a another right triangle CDE. Let D be the submarine and E is the other point.
The length CE is length AE - length AC = 284 - 234 = 50 m
We can calculate the angle ECD:


This is also the angle ACB, so we can find the length AB:



So the height of the building is 468m
To solve this problem we will apply the concepts related to Reyleigh's criteria. Here the resolution of the eye is defined as 1.22 times the wavelength over the diameter of the eye. Mathematically this is,

Here,
D is diameter of the eye


The angle that relates the distance between the lights and the distance to the lamp is given by,

For small angle, 
Here,
d = Distance between lights
L = Distance from eye to lamp
For small angle 
Therefore,



Therefore the distance is 5.367km.
C. Age structure. Hope I helped :)
We did this experiment before, when the rope moves, it represents the waves passing through in from the level of intensity. I hope this is a good answer.
Answer:
Cart A
Explanation:
Momentum can be computed by finding the product of mass and velocity. To solve this, you can use the formula below to find the greatest momentum:
p = mv
where:
p = momentum (kgm/s) m = mass (kg) v = velocity (m/s)
Because carts are moving along with the weights, we need to consider the whole system. This means that you need to add in the masses and the mass of the cart.
<u>Cart A:</u>
m = 200kg + 0 kg = 200 kg
v = 4.8 m/s
p = 200kg x 4.8 m/s = 960 kg-m/s
<u>Cart B:</u>
m = 200kg + 20 kg = 220 kg
v = 4.0 m/s
p = 220kg x 4.0 m/s = 880 kg-m/s
<u>Cart C:</u>
m = 200kg + 40 kg = 240 kg
v = 3.8 m/s
p = 240kg x 3.8 m/s = 912 kg-m/s
<u>Cart D:</u>
m = 200kg + 60 kg = 260 kg
v = 3.5 m/s
p = 260kg x 3.5 m/s = 910 kg-m/s
As you can see, Cart A has the greatest momentum.