Answer:
2.2386 m/s
Explanation:
I think you would use the momentum equation.
m1v1=m2v2
m1= mass of the bag (8.5kg)
v1= speed of bag (6.9 m/s)
m2= mass of bag and cart (26.2 kg)
v2= speed of cart and bag
Plug these numbers all into the equation and you solve for v2 which ends up at 2.2386 m/s
Answer:
2.84 m/s
Explanation:
At the top position of the circular trajectory, the normal reaction is zero:
N = 0
So it means that the only force that is providing the centripetal force is the gravitational force (the weight of the bucket). Therefore we have:

where
m is the mass of the water bucket
g = 9.8 m/s^2 is the acceleration of gravity
v is the speed of the bucket
r = 0.824 m is the radius of the circle
Solving for v,

Answer:
A
Explanation:
This is because distance traveled (i.e. displacement) is the integral of the velocity function, and velocity is the first derivative of the displacement function. To put this in perspective, the area bounded by a curve can be found by taking the integral of the equation of the curve, taking values on the x-axis as limits.
Answer:
Explanation:
Water waves are generally a transverse wave which do not cause permanent displacement of molecules of the medium. Transverse waves are waves in which the direction of propagation of the wave is perpendicular to the direction of vibration of the particles of the medium.
As the wave propagates from one point to another on the surface of water transferring energy, a molecule of water on its surface vibrates upwards and downwards. Its motion is perpendicular to the direction of propagation of the wave. After the vibration, it comes back to its initial position.
It would be 1.5 meters im sure form that distance to me is that nswe