Answer:

Explanation:
Hello,
In this case, for this heat transfer process in which the heat lost by the hot platinum is gained by the cold deuterium oxide based on the equation:

We can represent the heats in terms of mass, heat capacities and temperatures:

Thus, we solve for the mass of platinum:

Next, by using the density of platinum we compute the volume:

Which computed in terms of the edge length is:

Therefore, the edge length turns out:
![a=\sqrt[3]{180cm^3}\\ \\a=5.65cm](https://tex.z-dn.net/?f=a%3D%5Csqrt%5B3%5D%7B180cm%5E3%7D%5C%5C%20%5C%5Ca%3D5.65cm)
Best regards.
The amount of heat needed to raise the temperature of an object is obtained through the equation,
H = m(cp)(20) + m (heat of fusion) + m(cp) (dT)
where H is heat, m is mass, cp is specific gravity, and dT is the change in temperature. The specific gravity of water is 0.5 cal/g.C. The third term is for water and cp is equal to 1 cal/g.C. Substituting the values,
815 cal = (5 g)(0.5 cal/g.C)(20C) + (80 cal/g)(5 g) + 5(1)(T2)
The value of T2 is 73 degrees C.
It wouldn’t be hydrogen bonding because hydrogen bonding takes place with highly electronegative elements like N,O & F being the most electronegative. It’s not ion - dipole because there is no ion present. So I’m sure it is dispersion
Answer:
it is a membrane-linked glycoproteins that connects with other cells which are also called transmembrane
Hope This Helped
Answer:
see explanation below
Explanation:
The question is incomplete. The missing parts are a) determine the electrophylic site. b) determine the nucleophylic site.
In order to do this, we need to write the reaction and do the mechanism. The nucleophylic site will be the site where the nucleophyle attacks to form the product. In this case the site is the carbon next to the bromine. In this place the Oxigen which is the nucleophyle goes. The electrophyle is the site where one atom substract to complete it's charges. In this case, the electrophyle is usually the hydrogen, so the site will be next to the oxygen after the nucleophyle attack.
You can see it better in the attached picture.