Answer:
This is the balanced equation:
Pb(NO₃)₂ (aq) + 2NaI (aq) → 2NaNO₃ (aq) + PbI₂ (s) ↓
Explanation:
This are the reactants:
PbNO₃
NaI
Iodide can react to Pb²⁺ to make a solid compound.
Answer:
The book sitting on the desk
Explanation:
The gravitational potential energy of an object is the energy possessed by the object due to its position relative to the ground.
It is calculated as:

where
m is the mass of the object
g is the acceleration due to gravity
h is the height of the object with respect to the ground
From the formula, we see that the GPE of an object is directly proportional to the heigth h: so, the higher the location of the object, the larger the GPE.
In this problem, we are comparing a book sitting on a desk and the same book sitting on the floor. In the two situations, the mass of the book is the same; however, in the first case, the value of the height is h, while in the second case, the value of h is lower (because the book is located at a lower height, being on the floor).
Therefore, we can conclude that the first book must have a larger GPE, since it has a larger value of h.
Answer:
Robert Boyle
Explanation:
Robert Boyle was an Irish chemist and is famously referred to as the first modern chemist. He was born on the 25th of January, 1627 in Lismore, Ireland and died on the 31st, December 1691, London, United Kingdom.
Robert Boyle was the first to determine the relationship between the pressure and volume of a gas.
Boyles states that when the temperature of an ideal gas is kept constant, the pressure of the gas is inversely proportional to the volume occupied by the gas.
Mathematically, Boyles law is given by;
Where;
V1 and V2 represents the initial and final volumes respectively.
T1 and T2 represents the initial and final temperatures respectively.
Answer:
16.5 dm³
Explanation:
Data Given:
no. moles of O₂ = 0.735 moles
volume of O₂ = ?
Solution:
Now
we have to find volume of O₂ gas
Formula used for this purpose
No. of moles = Volume / molar volume
where
molar volume at STP for Oxygen (O₂) = 22.4 dm³/mol
No. of moles O₂ = Volume of O₂ / 22.4 dm³/mol . . . . . .(1)
Put values in equation 1
0.735 = Volume of O₂ / 22.4 dm³/ mol
rearrange above equation
Volume of O₂ = 0.735 x 22.4 dm³/ mol
Volume of O₂ = 16.5 dm³
So,
the volume of O₂ at STP is 16.5 dm³
Explanation:
4.hydrogen is able to accept or donate electrons,so it is the most versatile storm I the periodic chart