Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 (
)
β₂ - β₁ = 10
log \frac{I_2}{I_1} =
= 3
= 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ =
r₂ = 0.316 m
Answer:
Tt = 70 + 135e^-0.031t
13 minutes
Explanation:
Given that :
Initial temperature, Ti = 205°
Temperature after 2.5 minutes = 195°
Temperature of room, Ts= 70
Using the relation :
Tt = Ts + Ce^-kt
Temperature after time, t
When freshly poured, t = 0
205 = 70 + Ce^-0k
205 = 70 + C
C = 205 - 70 = 135°
T after 2.5 minutes to find proportionality constant, k
Tt = Ts + Ce^-kt
195 = 70 + 135e^-2.5k
125 = 135e^-2.5k
125 / 135 = e^-2.5k
0.9259 = e^-2.5k
Take In of both sides :
−0.076989 = - 2.5k
k = −0.076989 / - 2.5
k = 0.031
Equation becomes :
Tt = 70 + 135e^-0.031t
t when Tt = 160
160 = 70 + 135e^-0.031k
90 = 135e^-0.031t
90/135 = e^-0.031t
0.6667 = e^-0.031t
In(0.6667) = - 0.031t
−0.405465 = - 0.031t
t = 0.405465/ 0.031
t = 13.071
t = 13 minutes
Information that is given:
a = -5.4m/s^2
v0 = 25 m/s
---------------------
S = ?
Calculate the S(distance car traveled) with the formula for velocity of decelerated motion:
v^2 = v0^2 - 2aS
The velocity at the end of the motion equals zero (0) because the car stops, so v=0.
0 = v0^2 - 2aS
v0^2 = 2aS
S = v0^2/2a
S = (25 m/s)^2/(2×5.4 m/s^2)
S = (25 m/s)^2/(10.8 m/s^2)
S = (625 m^2/s^2)/(10.8 m/s^2)
S = 57.87 m
The answer is species, I hope this helps!