1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnoma [55]
3 years ago
13

A furnace uses preheated air to improve its fuel efficiency. Determine the adiabatic flame temperature when the furnance is oper

ating at a mass air-fuel ratio of 16 for air preheated to 600 K. The fuel enters at 300 K. Assume the following simplified thermodynamic properties:
Tref = 300 K MWFUEL=MWAIR=MWPROD = 29 kg/kmol cp,fuel =cp,air= cp,prod = 1200 J / kg-K
hf,air = hf,prod = 0 hf,fuel = 4x107 J/kg
Engineering
1 answer:
balu736 [363]3 years ago
8 0

Answer:

2543 k

Explanation:

This problem can be resolved by applying the first law of thermodynamics

<u>Determine the adiabatic flame temperature</u> when the furnace is operating at a mass air-fuel ratio of 16 for air preheated to 600 K

attached below is a detailed solution

cp = 1200

You might be interested in
Air enters a tank through an area of 0.2 ft2 with a velocity of 15 ft/s and a density of 0.03 slug/ft3. Air leaves with a veloci
Mademuasel [1]

Answer:

please find attached.

Explanation:

4 0
3 years ago
Water flows steadily through the pipe as shown below, such that the pressure at section (1) and at section (2) are 300 kPa and 1
steposvetlana [31]

Answer:

The velocity at section is approximately 42.2 m/s

Explanation:

For the water flowing through the pipe, we have;

The pressure at section (1), P₁ = 300 kPa

The pressure at section (2), P₂ = 100 kPa

The diameter at section (1), D₁ = 0.1 m

The height of section (1) above section (2), D₂ = 50 m

The velocity at section (1), v₁ = 20 m/s

Let 'v₂' represent the velocity at section (2)

According to Bernoulli's equation, we have;

z_1 + \dfrac{P_1}{\rho \cdot g} + \dfrac{v^2_1}{2 \cdot g} = z_2 + \dfrac{P_2}{\rho \cdot g} + \dfrac{v^2_2}{2 \cdot g}

Where;

ρ = The density of water = 997 kg/m³

g = The acceleration due to gravity = 9.8 m/s²

z₁ = 50 m

z₂ = The reference = 0 m

By plugging in the values, we have;

50 \, m + \dfrac{300 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{(20 \, m/s)^2}{2 \times 9.8 \, m/s^2} = \dfrac{100 \ kPa}{997 \, kg/m^3 \times 9.8 \, m/s^2} + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}50 m + 30.704358 m + 20.4081633 m = 10.234786 m + \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

50 m + 30.704358 m + 20.4081633 m - 10.234786 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

90.8777353 m = \dfrac{v_2^2}{2 \times 9.8 \, m/s^2}

v₂² = 2 × 9.8 m/s² × 90.8777353 m

v₂² = 1,781.20361 m²/s²

v₂ = √(1,781.20361 m²/s²) ≈ 42.204308 m/s

The velocity at section (2), v₂ ≈ 42.2 m/s

3 0
2 years ago
Calculate the viscosity(dynamic) and kinematic viscosity of airwhen
nikitadnepr [17]

Answer:

(a) dynamic viscosity = 1.812\times 10^{-5}Pa-sec

(b) kinematic viscosity = 1.4732\times 10^{-5}m^2/sec

Explanation:

We have given temperature T = 288.15 K

Density d=1.23kg/m^3

According to Sutherland's Formula  dynamic viscosity is given by

{\mu} = {\mu}_0 \frac {T_0+C} {T + C} \left (\frac {T} {T_0} \right )^{3/2}, here

μ = dynamic viscosity in (Pa·s) at input temperature T,

\mu _0= reference viscosity in(Pa·s) at reference temperature T0,

T = input temperature in kelvin,

T_0 = reference temperature in kelvin,

C = Sutherland's constant for the gaseous material in question here C =120

\mu _0=4\pi \times 10^{-7}

T_0 = 291.15

\mu =4\pi \times 10^{-7}\times \frac{291.15+120}{285.15+120}\times \left ( \frac{288.15}{291.15} \right )^{\frac{3}{2}}=1.812\times 10^{-5}Pa-swhen T = 288.15 K

For kinematic viscosity :

\nu = \frac {\mu} {\rho}

kinemic\ viscosity=\frac{1.812\times 10^{-5}}{1.23}=1.4732\times 10^{-5}m^2/sec

3 0
3 years ago
Match the word with the definition:
aksik [14]

1. Renewable Resources  = (Renewable means you can keep making it) =  resources that can be replenished (such as trees)

2. Nonrenewable Resources  =  ( Nonrenewable means it can't be made once it is used up) = resources that are gone once they are used (such as fossil fuels)

3. Producer  =  ( produces something) = person who makes goods or provides services

4. Consumer  = ( uses something) =   person whose wants are satisfied by using goods and services

5. Allocate  = ( put someplace) =   distribute

6. Choice =  option

7 0
3 years ago
Read 2 more answers
What does the word “robot” mean? A.Clone B. Athlete C. Servant D. Actor
hram777 [196]

Answer:

a. clone

Explanation:

4 0
3 years ago
Other questions:
  • Given the following data, plot the stress-strain curves for the two unknown materials on the same set of stress-strain axes. Den
    9·1 answer
  • Steam flows at steady state through a converging, insulated nozzle, 25 cm long and with an inlet diameter of 5 cm. At the nozzle
    11·1 answer
  • A structural component in the shape of a flat plate 29.6 mm thick is to be fabricated from a metal alloy for which the yield str
    11·1 answer
  • For a very rough pipe wall the friction factor is constant at high Reynolds numbers. For a length L1 the pressure drop over the
    9·1 answer
  • If noise levels are high enough that you have to raise
    7·1 answer
  • Solved this question??????????????????
    13·1 answer
  • How to comment other people
    9·2 answers
  • A 1/4" nut driver with a 1.52 inch diameter handle is used to install a 14" 6 UNC
    13·1 answer
  • A fine-grained soil has a liquid limit of 200%, determined from the Casagrande cup method. The plastic limit was measured by rol
    15·1 answer
  • 12. What procedure should you follow when taking measurements?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!