Hello!
Most ocean waves obtain their energy and motion from the wind.
Ocean waves are surface waves that move across the surface of the ocean. When wind touches the surface of the water, there is friction in the contact zone. This friction causes a drag effect, that makes wrinkles on the surface of the water. As the wrinkles get bigger, they transform into full-blown waves, and the taller the wave, the more energy it can extract from the wind, making them even bigger and to move longer distances.
Have a nice day!
Answer:
h’ = 1/9 h
Explanation:
This exercise must be solved in parts:
* Let's start by finding the speed of sphere B at the lowest point, let's use the concepts of conservation of energy
starting point. Higher
Em₀ = U = m g h
final point. Lower, just before the crash
Em_f = K = ½ m
energy is conserved
Em₀ = Em_f
m g h = ½ m v²
v_b =
* Now let's analyze the collision of the two spheres. We form a system formed by the two spheres, therefore the forces during the collision are internal and the moment is conserved
initial instant. Just before the crash
p₀ = 2m 0 + m v_b
final instant. Right after the crash
p_f = (2m + m) v
the moment is preserved
p₀ = p_f
m v_b = 3m v
v = v_b / 3
v = ⅓ 
* finally we analyze the movement after the crash. Let's use the conservation of energy to the system formed by the two spheres stuck together
Starting point. Lower
Em₀ = K = ½ 3m v²
Final point. Higher
Em_f = U = (3m) g h'
Em₀ = Em_f
½ 3m v² = 3m g h’
we substitute
h’=
h’ =
h’ = 1/9 h
Answer:
It comes out the positive side of the battery and goes in to the negative side of the battery
Explanation:
There are already electrons in wires in a circuit before you add the battery. By adding the battery, you're giving the electrons the energy it needs to move along the circuit.
In a series circuit, the circuit is one continuous loop so there is only one path for the electrons to go - out of the positive side of the battery and around the circuit then goes back into the negative side of the battery.
However, with a parallel circuit, there are two or more ways the electrons can go so they take the path of least resistance. The electrons still go out the positive side of a battery but along the circuit, the electrons will go through the path of least resistance ( I tend to think of it like a net with holes in it - the lower the resistance the bigger the holes for the electrons to go through so more can fit in a set amount of time ) but the electrons still go out of the positive side and in through the negative
Length L = 25 cm = 0.25 m, B = 600 G = 0.06 T ( 1G = 0.0001 T)
emf= 10 V
Solution:
emf = vBL
v= emf / BL
5 = emf/ (0.25 T× 0.25 m)
emf = 0.3125 v
Magnetic field
The magnetic influence on moving electric charges, electric currents, and magnetic materials is described by a magnetic field, which is a vector field. A force perpendicular to the charge's own velocity and the magnetic field acts on it when the charge is travelling through a magnetic field.
To learn more about the magnetic field refer here:
brainly.com/question/23096032
#SPJ4
Harmonics, Loop and Harmonic number
Hope this helps :)