By definition we have to:
LOG (k2 / k1)=(-Ea/R)*(1/T1-1/T2)
Where,
k1 = 0.0117 s-1
K2 = 0.689 s-1
T1 = 400.0 k
T2 = 450.0 k
R is the ideal gas constant
R = 8.314 KJ / (Kmol * K)
Substituting
ln (0.0117/0.689)=-Ea/(8.314)*((1/400)-(1/450))
Clearing Ea:
Ea = 122 kJ
answer
<span> the activation energy in kilojoules for this reaction is
</span> Ea = 122 kJ
<span>
</span>
<span>Carbon atom showing 6 protons as electro positive charge in its nuclei should have same no of -ve charged electrons , that is 6 electronns in its radii to make an atom of C as a neutral element , for that each element in its atomic state should have equal no of protons and electrons , the no of neutrons which has no electric charge and almost negligible weight does play significant role except contributes to isotopes of the given atom or an element, so C atom having 6 protons should have 6 electrons</span>
The intensity of the sound wave is defined as the ratio between the power of the wave and the area through which the wave passes:

where
I is the intensity
P is the power
A is the area
If we use the data of the problem,

and

, we find the intensity of the sound wave:
Answer:
When an electromagnetic wave passes from space to matter, some part of the energy is absorbed by the matter and it increases its energy. The wave may reflect and some part may pass through the matter depending on the amount of energy they have. The amplitude of the wave decreases if some parts of it are reflected.
<span>Electromagnetic, Strong Nuclear, Weak Nuclear, and Gravity</span>