Answer:
∆T = Mv^2Y/2Cp
Explanation:
Formula for Kinetic energy of the vessel = 1/2mv^2
Increase in internal energy Δu = nCVΔT
where n is the number of moles of the gas in vessel.
When the vessel is to stop suddenly, its kinetic energy will be used to increase the temperature of the gas
We say
1/2mv^2 = ∆u
1/2mv^2 = nCv∆T
Since n = m/M
1/2mv^2 = mCv∆T/M
Making ∆T subject of the formula we have
∆T = Mv^2/2Cv
Multiple the RHS by Cp/Cp
∆T = Mv^2/2Cv *Cp/Cp
Since Y = Cp/CV
∆T = Mv^2Y/2Cp k
Since CV = R/Y - 1
We could also have
∆T = Mv^2(Y - 1)/2R k
Hello,
Answer: kilogram
Further explaining: in science is used to measure weight of an object and used for accreditation.
Hope this helps!
Answer:
The statement is not correct.
Explanation:
To know if the statement is correct, we shall determine the velocity of the car after 3 s. This is illustrated below.
Data obtained from the question include:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 3 s
Final velocity (v) =?
v = u + gt
v = 0 + (9.8 × 3)
v = 0 + 29.4
v = 29.4 m/s
Thus, the velocity of the car after 3 s is 29.4 m/s.
Hence, the statement made by the friend is not correct as the car has a falling velocity of 29.4 m/s after 3 s.
Answer:
I'm not 100% sure, but I think the answer would be the first one because there's a force pushing the object in every direction, so they would cancel eachother out and make the object stay in the same place.
Explanation:
pls vote brainliest
The answer is cardiovascular.