P2o3 is <span>diphosphorus trioxide.
Add water and you get phosphoric acid</span>
Answer:
0.8J
Explanation:
Given parameters:
Force = 20N
Compression = 0.08m
Unknown:
Spring constant = ?
Elastic potential energy = ?
Solution:
To solve this problem, we use the expression below:
F = k e
F is the force
k is the spring constant
e is the compression
20 = k x 0.08
k = 250N/m
Elastic potential energy;
EPE =
k e² =
x 250 x 0.08²
Elastic potential energy = 0.8J
I believe it’s B; Theories may be proven to be true and become laws.
A would make sense if we were talking about hypotheses however, we’re not.
<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>
- A certain circuit is composed of two series resistors
- The total resistance is 10 ohms
- One of the resistor is 4 ohms
<h3>
<u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- We have to find the value of other resistor?
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
We know that,
In series combination,
- When a number of resistances are connected in series, the equivalent I.e resultant resistance is equal to the sum of the individual resistances and is greater than any individual resistance
<u>That </u><u>is</u><u>, </u>
Rn in series = R1 + R2 + R3.....So on
<u>Therefore</u><u>, </u>
<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
We have,
R1 + R2 = 10 Ω
4 + R2 = 10Ω
R2 = 10 - 4
R2 = 6Ω
Hence, The value of R2 resistor in series is 6Ω