Answer:
Potential energy of the object will be equal to mgh
Explanation:
Let the mass of the object is m
Acceleration due to gravity is 
Let the object is released from height h
We have to find the potential energy
Potential energy is of an object released from height h is equal to
, here m is mass, g is acceleration due to gravity and h is height from which object is released.
To minimize loss of heat or absorption of heat from surroundings
Answers:
a) 5400000 J
b) 45.92 m
Explanation:
a) The kinetic energy
of an object is given by:

Where:
is the mass of the train
is the speed of the train
Solving the equation:

This is the train's kinetic energy at its top speed
b) Now, according to the Conservation of Energy Law, the total initial energy is equal to the total final energy:


Where:
is the train's initial kinetic energy
is the train's initial potential energy
is the train's final kinetic energy
is the train's final potential energy, where
is the acceleration due gravity and
is the height.
Rewriting the equation with the given values:

Finding
:
Answer:
0.44c
Explanation:
We know that
Time interval at speed (ts)= time interval at rest(tr) / gamma
where
gamma = √[1-(v/c)²]
ts = tr / gamma
tr/ts = gamma
But
Ss/Sr = gamma
Where
Sr = clock speed at rest, Ss at speed):
So
√[1-(v/c)²] = 2/5
1 - (v/c)² = 4/25
(v/c)²= 5/25
v/c = √5 / 5
v = 0.444c