1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irinina [24]
3 years ago
12

Air enters a turbine operating at steady state with a pressure of 75 Ibf/in.^2, a temperature of 800º R and velocity of 400 ft/s

. At the turbine exit the conditions are 15Ibf/in.^2, 600ºR, and 100ft/s. Heat transfer from the turbine to its surroundings takes place at an average surface temperature of 620ºR. The rate of heat transfer is 2btu/Ib of air passing through the turbine. For the turbine, determine: a. The work developed (Btu/Ib); and b. The exergy destruction (Btu/lb).
Physics
1 answer:
Arturiano [62]3 years ago
5 0

Answer:

(a) W/m = 49.334 Btu/lb

(b) \frac{E_{d} }{m} = 22.12 Btu/lb

Explanation:

For the given problem, it can be assumed that the system is operating at steady state and the effects of potential energy can be neglected.

(a) Using the thermodynamic table for air.

At the temperature (T_{1})of 800 ºR and pressure (P_{1}) of 75 Ibf/in.^2, we can deduce that:

Specific enthalpy (h_{1}) = 191.81 BTu/lb

Specific entropy (s_{1}) = 0.6956 Btu/(lb.ºR)

At the temperature (T_{2})of 600 ºR and pressure (P_{2}) of 15 Ibf/in.^2, we can deduce that:

Specific enthalpy (h_{2}) = 143.47 BTu/lb

Specific entropy (s_{2}) = 0.6261 Btu/(lb.ºR)

The work done can be calculated using energy rate equation:

\frac{W}{m} = \frac{Q}{m} + (h_{1} - h_{2}) + \frac{V_{1}^{2} - V_{2}^{2}}{2}

Q/m = heat transfer = -2 Btu/lb

V_{1} = 400 ft/s

V_{2} = 100 ft/s

\frac{W}{m} = -2 + (191.81 - 143.47) + \frac{400^{2} - 100^{2}}{2}*[tex]\frac{1}{2*32.2*778}[/tex] = -2 + 48.34 + 29.938 = 49.334 Btu/lb

(b) To calculate the exergy destruction, we will use the equation for exergy rate:

\frac{E_{d} }{m} = [1-\frac{T_{o} }{T_{b} }](\frac{Q}{m}) - \frac{W}{m} + [(h_{1} - h_{2}) -T_{o}(s_{1} - s_{2}) + \frac{V^{2} _{1} - V_{2} ^{2}}{2}]

The equation above is further simplified to:

\frac{Ed}{m} = T_{o}[(s_{2} -s_{1}) - Rln\frac{P_{2} }{P_{1} } - \frac{Q/m}{T_{b} }]

Using a reference temperature (To) = 500 °R

Average surface temperature (Tb = 620°R

\frac{Ed}{m} = 500*[(0.6261 -0.6956) - (1.986/28.97)ln\frac{15 }{75 } - \frac{-2}{620}}]

\frac{E_{d} }{m} = 500*[-0.0695 +0.068688*1.609 +0.003225] = 22.12 Btu/lb

You might be interested in
. Calculate the efficiency of a bicycle if the input work to turn the pedal is 45J and the output work is 20J. * 1 point 2.25 2.
cestrela7 [59]

20/45=0.4*100= 44.4 so the answer is..................................................

Answer: 44.4%

8 0
3 years ago
True or false<br> Hydrogen fuel cells generate electricity by combining hydrogen with oxygen.
adoni [48]

Answer:

The answer is: True.

Explanation:

If free electrons or other substances could travel through the electrolyte, they would disrupt the chemical reaction. Whether they combine at anode or cathode, together hydrogen and oxygen form water, which drains from the cell. As long as a fuel cell is supplied with hydrogen and oxygen, it will generate electricity.

(Credit: Google)

7 0
3 years ago
The weight of a luggage is 69.3 N on the moon. Find its weight on the Earth.​
Galina-37 [17]

Answer:

Explanation:

weight on moon = 1/6* weight on earth

69.3=1/6*weight on earth

weight on earth = 69.3*6

weight on earth = 415.8 N

8 0
3 years ago
You're driving in a car at 50 km/h and bump into a car ahead traveling at 48 km/h in the same direction. the speed of impact is
salantis [7]

To solve this problem, we must remember about the law of conservation of momentum. The initial momentum mist be equal to the final momentum, that is:

m1 v1 + m2 v2 = (m1 + m2) v’

where v’ is the speed of impact

Since we are not given the masses of each car m1 and m2, so let us assume that they are equal, such that:

m1 = m2 = m

Which makes the equation:

m v1 + m v2 = (2 m) v’

Cancelling m and substituting the v values:

50 + 48 = 2 v’

2 v’ = 98

v ‘ = 49 km/h

 

<span>The speed of impact is 49 km/h.</span>

6 0
3 years ago
Sharks and related fish can sense the extremely weak electric fields emitted by their prey in the surrounding waters. These dete
Sonja [21]

Answer

2) 1.5×10-2 m

Explanation

The potential difference is related to the electric field by:

\Delta V=Ed (1)

where

\Delta V is the potential difference

E is the electric field

d is the distance

We want to know the distance the detectors have to be placed in order to achieve an electric field of

E=1 V/cm=100 V/m

when connected to a battery with potential difference

\Delta V=1.5 V

Solving the equation (1) for d, we find

d=\frac{\Delta V}{E}=\frac{1.5 V}{100 V/m}=0.015 m=1.5 \cdot 10^{-2} m

5 0
3 years ago
Other questions:
  • A car weighing 11.1 kN and traveling at 13.4 m/s without negative lift attempts to round an unbanked curve with a radius of 61.0
    13·1 answer
  • A 215-kg merry-go-round in the shape of a uniform, solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope a
    8·1 answer
  • A good hypothesis must be which of the following
    11·1 answer
  • if a bird at a constant speed going north and then turns west keeping the same speed does the momentum change
    9·2 answers
  • if you push your chair across the floor at a constant velocity how does the force of friction compare with the force you exert?
    13·2 answers
  • Are There some sounds for which we are all deaf
    8·1 answer
  • Which of the following is MOST needed for cosmologists to study the age of the universe? A. Energy levels B. Static C. Size D. D
    5·2 answers
  • The wavelength of a wave on a string is 1.2 meters. If the speed of the wave is 60 meters/second, what is its frequency?
    15·2 answers
  • Two cars travel in the same direction along a straight highway, one at a constant speed of 55 mi/h and the other at 60 mi/h.How
    7·1 answer
  • A train with proper length L has clocks at the front and back. A photon is fired from the front to the back. Working in the trai
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!