To develop the problem it is necessary to apply the concepts related to the ideal gas law, mass flow rate and total enthalpy.
The gas ideal law is given as,

Where,
P = Pressure
V = Volume
m = mass
R = Gas Constant
T = Temperature
Our data are given by




Note that the pressure to 38°C is 0.06626 bar
PART A) Using the ideal gas equation to calculate the mass flow,




Therfore the mass flow rate at which water condenses, then

Re-arrange to find 



PART B) Enthalpy is given by definition as,

Where,
= Enthalpy of dry air
= Enthalpy of water vapor
Replacing with our values we have that



In the conversion system 1 ton is equal to 210kJ / min


The cooling requeriment in tons of cooling is 437.2.
Answer:
The line voltage of the three phase network is 346.41 V
Explanation:
Star Connected Load
Resistance, R₁ = R₂ = R₃ = 18 Ω
For a star connected load, the line current = the phase current, that is we have

Whereby the the voltage across each resistance =
is given by the relation;
=
× R
Hence;
=
=
× R = 25 × 8 = 200 V
Therefore we have;
The line voltage,
= √3 ×
= √3 × 200 = 346.41 V.
Hence, the line voltage of the three phase network = 346.41 V.
Charlidamelio is overrated
Electromagnetic waves can transfer energy without a material medium.
3 examples of elctromagnetic energy include: Radio wave, X-rays and gamma rays
<h3>What is wave?</h3>
A wave is a disturbance that transfers energy from one point to another.
Electromagnetic waves are waves that does not require a material medium for the tranfer of energy
- Radio wave
- Gamma rays
- X-rays
- Light wave
Read more on Electromagnetic waves here: brainly.com/question/13874687