Answer:
Potential energy
Explanation:
Potential energy is the energy possed by an object at rest. It is otherwise referred to as the stored energy due position.
Answer:
49.2 g/mol
Explanation:
Let's first take account of what we have and convert them into the correct units.
Volume= 236 mL x (
) = .236 L
Pressure= 740 mm Hg x (
)= 0.97 atm
Temperature= 22C + 273= 295 K
mass= 0.443 g
Molar mass is in grams per mole, or MM=
or MM=
. They're all the same.
We have mass (0.443 g) we just need moles. We can find moles with the ideal gas constant PV=nRT. We want to solve for n, so we'll rearrange it to be
n=
, where R (constant)= 0.082 L atm mol-1 K-1
Let's plug in what we know.
n=
n= 0.009 mol
Let's look back at MM=
and plug in what we know.
MM= 
MM= 49.2 g/mol
The reaction of an Arrhenius acid with an Arrhenius base produces water and <span>A) a salt</span>
Answer:
DECREASE BY A FACTOR OF FOUR
Explanation:
Using pressure equation:
P 1 / T1 = P2 /T2 (at constant volume)
P1 = P
T1 =T
P2 = ?
T2 = 4 T
So therefore;
P2 = P1T1/ T2
P2 = P T/ 4 T
P2 = 1/4 P
The pressure is decreased by a factor of four, the new pressure is a quarter of the formal pressure of the gas.