Answer:
(1) -12 Kcal/mol
Explanation:
Our answer options for this question are:
(1) -12 Kcal/mol
(2) -13 Kcal/mol
(3) -15 Kcal/mol
(4) -16 Kcal/mol
With this in mind, we can start with the chemical reaction (Figure 1). In this reaction, <u>two bonds are broken</u>, a C-H and a Br-Br. Additionally, a C-Br and a H-Br are <u>formed</u>.
If we want to calculate the enthalpy value, we can use the equation:
<u>ΔH=ΔHbonds broken-ΔHbonds formed</u>
If we use the energy values reported, its possible to calculate the energy for each set of bonds:
<u>ΔHbonds broken</u>
<u />
C-H = 94.5 Kcal/mol
Br-Br = 51.5 Kcal/mol
Therefore:
105 Kcal/mol + 53.5 Kcal/mol = 146 Kcal/mol
<u>ΔHbonds formed</u>
C-Br = 70.5 Kcal/mol
H-Br = 87.5 Kcal/mol
Therefore:
70.5 Kcal/mol + 87.5 Kcal/mol = 158 Kcal/mol
<u>ΔH of reaction</u>
<u />
ΔH=ΔHbonds broken-ΔHbonds formed=(146-158) Kcal/mol = -12 Kcal/mol
I hope it helps!
<u />
Hydrogen bond is found between water molecule if im correct
Answer:

Explanation:
A galvanic cell is composed of two electrodes immersed in a suitable electrolyte and connected via a salt bridge. One of the electrodes serves as a cathode where reduction or gain of electrons takes place. The other half cell functions as an anode where oxidation or loss of electrons occurs.
The representation is given by writing the anode on left hand side followed by its ion with its molar concentration. It is followed by a salt bridge. Then the cathodic ion with its molar concentration is written and then the cathode.
As it is given that cadmium acts as anode, it must be on the left hand side and copper must be on right hand side.

Answer:

Explanation:
Hello!
In this case for the solution you are given, we first use the mass to compute the moles of CuNO3:

Next, knowing that the molarity has units of moles over liters, we can solve for volume as follows:

By plugging in the moles and molarity, we obtain:

Which in mL is:

Best regards!