Answer:
a. 1.78x10⁻³ = Ka
2.75 = pKa
b. It is irrelevant.
Explanation:
a. The neutralization of a weak acid, HA, with a base can help to find Ka of the acid.
Equilibrium is:
HA ⇄ H⁺ + A⁻
And Ka is defined as:
Ka = [H⁺] [A⁻] / [HA]
The HA reacts with the base, XOH, thus:
HA + XOH → H₂O + A⁻ + X⁺
As you require 26.0mL of the base to consume all HA, if you add 13mL, the moles of HA will be the half of the initial moles and, the other half, will be A⁻
That means:
[HA] = [A⁻]
It is possible to obtain pKa from H-H equation (Equation used to find pH of a buffer), thus:
pH = pKa + log₁₀ [A⁻] / [HA]
Replacing:
2.75 = pKa + log₁₀ [A⁻] / [HA]
As [HA] = [A⁻]
2.75 = pKa + log₁₀ 1
<h3>2.75 = pKa</h3>
Knowing pKa = -log Ka
2.75 = -log Ka
10^-2.75 = Ka
<h3>1.78x10⁻³ = Ka</h3>
b. As you can see, the initial concentration of the acid was not necessary. The only thing you must know is that in the half of the titration, [HA] = [A⁻]. Thus, the initial concentration of the acid doesn't affect the initial calculation.
Answer:
amount of charge
Explanation:
Oxygen and sulfur are both in Group 16, which means they have a -2 charge. They have two more electrons than protons, making the charge of the ion negative.
Hope that helps.

☃️ Chemical formulae ➝ 
How to find?
For solving this question, We need to know how to find moles of solution or any substance if a certain weight is given.

Solution:
❍ Molecular weight of 
= 2 × 126.90
= 253.80
= 254 (approx.)
❍ Given weight: 12.7
Then, no. of moles,
⇛ No. of moles = 12.7 / 254
⇛ No. of moles = 0.05 moles
⚘ No. of moles of Iodine molecule in the given weight = <u>0.05</u><u> </u><u>moles </u>
<u>━━━━━━━━━━━━━━━━━━━━</u>
Molarity and normality are the ways of expressing concentration which includes the volume of the solution.
As we know,
Molarity is defined as the number of moles of solute dissolved in 1L of the solution. Thus,
M = no. of moles of solution/ Volume of solution on litres.
while, Normality is the number of gram equivalents of the solute dissolved per litre of the solution.
N = Gram equivalent of the solute/ volume of solution in litres.
while, the other concentration expressing terms such as mole fraction, molality includes the mass of the solution and solvent respectively.
To know more about molarity visit the link:
brainly.com/question/9754178?referrer=searchResults
#SPJ4
Usually, a model is a depiction of a certain entity, never the real thing. In times
past, many, many models look great on paper but are way off!