V = I · R
Voltage = (current) · (Resistance)
Voltage = (250 A) · (2.09 x 10⁴)
Voltage = 5,225,000 volts .
I may be out of line here, but I'm pretty sure
that the resistance is 2.09 x 10⁻⁴ .
Then
Voltage = 0.05225 volt (not 5 million and something)
The material that the cylinder is made from is Butyl Rubber.
<h3>What is Young's modulus?</h3>
Young's modulus, or the modulus of elasticity in tension or compression, is a mechanical property that measures the tensile or compressive strength of a solid material when a force is applied to it.
<h3>Area of the cylinder</h3>
A = πr²

<h3>Young's modulus of the cylinder</h3>

Where;
When 5 kg mass is applied, the extension = 10 cm - 9.61 cm = 0.39 cm = 0.0039 m.

When the mass is 50 kg,
extension = 10 cm - 7.73 cm = 2.27 cm = 0.0227 m

The Young's modulus is between 0.001 GPa to 0.002 GPa
Thus, the material that the cylinder is made from is Butyl Rubber.
Learn more about Young's modulus here: brainly.com/question/6864866
Answer:
zero
Explanation:
For the box remaining at rest, the total acceleration on the box must be zero. Since force F = m*a, the force F must also be zero.
The answer to your question is (Wave W is being diffracted, Wave X is being reflected, and waves Y and Z are being refracted.)
HOPE THIS HELPS YOU CAUSE IM DOING TEST AND I HOPE IM RIGHT AS WELL
PLZ GIVE ME THE BRAINLIEST ANSWER HAVE A GOOD DAY
Answer:
-2.33 m/s²
Explanation:
The computation of the skateboarder’s acceleration is shown below;
Acceleration means the change in velocity per unit with respect to time.
In the given case, the initial velocity is 7 m/s.
As in the question it is mentioned that it comes to a stop, so the final velocity would be zero.
And, The time elapsed is 3 seconds.
Now the following equation should be used
a = (v,final - v,initial) ÷ t
= (0 - 7)/3
= -2.33 m/s²