Answer:
F = 1958.4 N
Explanation:
By volume conservation of the fluid on both sides we can say that volume of fluid displaced on the side of the car must be equal to the volume of fluid on the other side
so we have



so the car will lift upwards by distance 1.2 m and the other side will go down by distance 15.55 m
So here the net pressure on the smaller area is given as

excess pressure exerted on the smaller area is given as


now the force required on the other side is given as



Answer:
34.6 m/s
Explanation:
From conservation of momentum, the sum of initial and final momentum are equal. Momentum is a product of mass and velocity. Initial mass will be 42.8+31.5+25.9=100.2 kg
Final mass will be 31.5+25.9=57.4 kg
From formula of momentum
M1v1=m2v2
Making v2 the subject of the formula then

Substitute 100.2 kg for M1, 19.8 m/s fkr v1 and 57.4 kg for m2 then

Answer:

Explanation:
The force is defined as the negative of the derivative of the potential energy:

If we use the potential energy function given in this problem:

and we calculate the force, we get:

So, the force is

Answer:
Kinematics is the study of motion, without any reference to the forces that cause the motion. It basically means studying how things are moving, not why they're moving. It includes concepts such as distance or displacement, speed or velocity, and acceleration, and it looks at how those values vary over time.
Here current is flowing through the copper wire so this shows that copper is good conductor of electricity.
It is having less resistance as it conducts the current easily
Now a rubber coating on it will protect us from electric shock
So this property shows that rubber is a bad conductor of electricity
It is having large electrical resistance due to which it will conduct no current
Rubber : - No transmittance of electricity
copper :- good transmittance of electricity