Answer:
Electrons are located in specific orbit corresponding to discrete energy levels
Explanation:
In Bohr's model of the atom, electron orbit the nucleus in specific levels, each of them corresponding to a specific energy. The electrons cannot be located in the space between two levels: this means that only some values of energy are possible for the electrons, so the energy levels are quantized.
A confirmation of Bohr's model is found in the spectrum of emission of gases. In fact, when an electron jumps from a higher energy level to a lower energy level, it emits a photon whose energy is exactly equal to the difference in energy between the two levels: since the energy levels are discrete, this means that the emitted photons cannot have any value of wavelength, but also their wavelength will appear as a discrete spectrum. This is exactly what it is observed in the spectrum of emission of gases.
Answer:
Plzzzzzzzzzzzzzzzz brainliest
Explanation:
In static friction, the frictional force resists force that is applied to an object, and the object remains at rest until the force of static friction is overcome. In kinetic friction, the frictional force resists the motion of an object. ... The frictional force itself is directed oppositely to the motion of the object.
Answer: The Flash, Allen's top speed is Mach 3.3, or 2,532 miles per hour.
Explanation:
Answer:
marblebrainiest plz\c cmarble
Explanation:
Answer:
The potential energy of the hiker is
.
Explanation:
Given that,
Mass of the hiker, m = 61 kg
Height above sea level, h = 1900 m
We need to find the potential energy associated with a 61-kg hiker atop New Hampshire's Mount Washington. The potential energy is given by :

g is the acceleration due to gravity

So, the potential energy of the hiker is
. Hence, this is the required solution.