PART A)
By Snell's law we know that

here we know that



now from above equation we have


so it will refract by angle 39.3 degree
PART B)
Here as we can see that image formed on the other side of lens
So it is a real and inverted image
Also we can see  that size of image is lesser than the size of object here
Here we can use concave mirror to form same type of real and inverted image
PART C)
As per the mirror formula we know that



so image will form at 30 cm from mirror
it is virtual image and smaller in size
 
        
             
        
        
        
Answer:
a)1500N
b)153.06kg
Explanation:
F = ma 
g(moon) = is the acceleration due to gravity on the moon
g(earth) is the acceleration due to gravity on the earth
g(moon) = 1/6g(earth)
g(earth) =6g(moon)
F(gearth) = mg(earth)
                = m 6g(moon)
                = 6 × 250
                = 1500N
b) F(gearth) = mg(earth)
 m = F /g
  = 1500/9.8
  = 153.06kg
 
        
                    
             
        
        
        
Following the initial 4.0 seconds of travel, the cart moved 32m.
<h3>What is an equation of motion?</h3>
Physicists use equations of motion to describe how a physical system behaves in terms of how its motion changes over time.
The behavior of a physical system is described by the equations of motion in more detail as a collection of mathematical functions expressed in terms of dynamic variables. These variables typically comprise time and spatial coordinates, but they could also have momentum components. The most flexible option is generalized coordinates, which can be any useful variable that is a component of the physical system. In classical mechanics, the functions are defined in a Euclidean space, while curved spaces are used in relativity instead. The equations are the answers to the differential equations describing the motion of the dynamics of the dynamics of a system are known. The amount of motion changes according to the strength of the force and does so in the direction of the force's applied straight line.
To know more about equations of motion, click here:
brainly.com/question/14355103
#SPJ4