We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.
Answer:
The answer is 218
Explanation:
Weight = mass * gravitational acceleration
weight is represented by F
F = 25kg (8.7)
(I'm pretty sure that you don't have to include the meters per second/per second thing)
Answer:
7,14545 mph and 3,1936 m/s
Explanation:
The average speed is calculated by dividing the displacement over time, then it is 26,2 miles/(3 2/3 hours), here 3 (2/3) hours is a mixed number, that represents 11/3 hours or 3,66 hours. Then the average speed is 7,14545 mph, now to turn this into meters per second, we notice as mentioned that 1 mile =1609 meters and 1 hour=3600 seconds. Then 7,14545 miles/hour* (1 hour/3600 seconds) * (1609 meters/1 mile)=3,1936 m/s
The acceleration which is gained by an object because of the gravitational force is called its acceleration due to gravity. Its SI unit is m/s2. Acceleration due to gravity is a vector, which means it has both a magnitude and a direction. The formula is ‘the change in velocity= gravity x time’ The acceleration due to gravity at the surface of Earth is represented as g. It has a standard value defined as 9.80665 m/s2.[1]