The kinetic energy is

and the height of the building doesn't matter at all.

joules
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:
Answer:
your in mr langfords class
Explanation:
bruh moment
(1) acceleration, a = 4 m/
(2) acceleration of 10 N,
= 1 m/
and acceleration of 30 N,
= 3 m/
Explanation:
- Here, the acceleration of the object could be found using the equation derived in the second law of motion. The equation is given as, F = ma where m is the acceleration of the object, m is the mass of the object and F is the applied on the object.
- Let
be the acceleration for force 10 N, to find acceleration rearrange the equation to a =
. When we substitute 10 N force and 10 kg mass of the box in the equation. We will get
= 1 m/
- Let
be the acceleration for force 30 N, to find acceleration rearrange the equation to F =
. When we substitute 30 N force and 10 kg mass of the box in the equation. We will get
= 3 m/
- To find the combined, just add the force and substitute in the above equation. Hence, a = 4 m/

Explanation:
Period of a mass on a spring is:
T = 2π√(m/k)
T is a function of only m and k. So the period is independent of force.