Answer:
A. Forces that act perpendicular to the surface and pull an object apart exert a tensile stress on the object.
Explanation:
Tensile stress is referred as a deforming force, in which force acts perpendicular to the surface and pull an object apart, attempting to elongate it.
The tensile stress is a type of normal stress, in which a perpendicular force creates the stress to an object’s surface.
Hence, the correct option is "A."
Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.
Answer:
a) 8kW
b) $128
Explanation:
Given the coefficient of performance of the heat pump cycle to be 2.5
Energy delivered by the heat pump = 20kW
a) net power required to operate the heat pump = Energy delivered / coefficient of performance
Net power required = 20/2.5
= 8kW
b) Given the cost of electricity is $0.08 for 1kWhour
Since net power required to operate heat pump = 8kW
If the heat pump operate for 200hours, total power required for a month = 8kW×200hours = 1600kWhour
since 1kWh of electricity costs $0.08, cost of electricity used in a month when the pump operates for 200hour will be 1600kWh×$0.08 which is equivalent to $128
Answer:
Because with this test you can determine complex material parameters like Young’s modulus, yield strength, ultimate strength and elongation at break. This is important because it provides us with the factor of safety that needs to be built-in the products using these materials.
Explanation:
This test consists in place the material between to tweezers to subdued the material into a stress-strain test. The figure shows the procedure.
In the x axe the strain and the y axe the stress.