Answer:
14.33 g
Explanation:
Solve this problem based on the stoichiometry of the reaction.
To do that we need the molecular weight of the masses involved and then calculate the number of moles, find the limiting reagent and finally calculate the mass of AgCl.
2 AgNO₃ + CaCl₂ ⇒ Ca(NO₃)₂ + 2 AgCl
mass, g 6.97 6.39 ?
MW ,g/mol 169.87 110.98 143.32
mol =m/MW 0.10 0.06 0.10
From the table above AgNO₃ is the limiting reagent and we will produce 0.10 mol AgCl which is a mass :
0.10 mol x 143.32 g/mol = 14.33 g
Empirical formula is the simplest ratio of components making up a compound.
The percentage composition of each element has been given
therefore the mass present of each element in 100 g of compound is
B N H
mass 40.28 g 52.20 g 7.53 g
number of moles
40.28 g / 11 g/mol 52.20 g / 14 g/mol 7.53 g / 1 g/mol
= 3.662 mol = 3.729 mol = 7.53 mol
divide the number of moles by the least number of moles, that is 3.662
3.662 / 3.662 3.729 / 3.662 7.53 / 3.662
= 1.000 = 1.018 = 2.056
the ratio of the elements after rounding off to the nearest whole number is
B : N : H = 1 : 1 : 2
therefore empirical formula for the compound is B₁N₁H₂
that can be written as BNH₂
Crystallization metamorphism sedimentation and erosion
I believe the answer is increases , decreases