Answer:
CH₄
Explanation:
According to Graham's law, <em>the rate of effusion of a gas (r) is inversely proportional to the square root of its molar mass (M)</em>.
Let's consider the following gases and their molar masses.
A) NH₃ 17.03 g/mol
B) CH₄ 16.04 g/mol
C) Ar 39.95 g/mol
D) HBr 80.91 g/mol
E) HCl 36.46 g/mol
Of these gases, CH₄ will have the greatest rate of effusion at a given temperature because it has the lowest molar mass.
<u>We are given:</u>
P1 = 3 atm T1 = 623 K <em>(350 + 273)</em>
P2 = x atm T2 = 523 K <em>(250 + 273)</em>
<em />
<u>Solving for x:</u>
From the idea gas equation:
PV = nRT
since number of moles (n) , Volume (V) and the Universal Gas constant(R) are constants;
P / T = k (where k is a constant)
the value of k will be the same for a gas with variable pressure and temperature and constant moles and volume
Hence, we can say that:
P1 / T1 = P2 / T2
3 / 623 = x / 523
x = 523 * 3 / 623
x = 2.5 atm (approx)
Therefore, the final pressure is 2.5 atm
Answer:
Summary. To summarize, the periodic table is important because it is organized to provide a great deal of information about elements and how they relate to one another in one easy-to-use reference. The table can be used to predict the properties of elements, even those that have not yet been discovered.
The volume of 0.555M KNO3 solution would contain 12.5 g of solute iss 223 mL.
<h3>What is the relationship between mass of solute and concentration of solution?</h3>
The mass of solute in a given volume of solution is related by the formula below:
- Molarity = mass/(molar mass * volume)
Therefore, volume of solution is given by:
Volume = Mass /molarity * molar mass
Molar mass of KNO₃ = 101 g/mol
Volume = 12.5/(0.555 * 101)
Volume = 0.223 L or 223 mL
In conclusion, the volume of the solution is obtained from the molarity of solution as well as mass and molar mass of solute.
Learn more about molarity and volume at: brainly.com/question/26873446
#SPJ1