Explanation:
The given data is as follows.
F = 
q = 
v = 385 m/s
= 0.876
Now, we will calculate the magnitude of magnetic field as follows.
B = 
= 
=
T
= 10.65 T
Thus, we can conclude that magnitude of the magnetic field is 10.65 T.
Answer:
Attracting means pulling toward you and repelling means pushing away
Explanation:
Answer:
» e. Electrons and protons
Explaination :
Electrons are negatively charged and protons are positively charged.
- The neutrons do not have a charge.
Strong Nuclear force: it is the short range force and strongest fundamental force in all type of forces.
Electromagnetism: this is the force due to magnetic and electric behavior of the particles. It is moderate type of force and its range is more than Nuclear force.
Weak Nuclear Force: This force is also short range force which act between the nucleoside. But this force is also moderate type of force
Gravitational force: this force is between two point masses and least order of force. also the range of this force is upto infinite.
so the correct order of this fundamental force is
<em>strong nuclear, electromagnetism, weak nuclear, gravitational</em>
"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.