Answer:
The current in second wire is 5.0 A.
(B) is correct option.
Explanation:
Given that,
Current in first wire = 3.7 A
Distance = 8.0 cm
We need to calculate the magnetic field due to the current carrying wire
Using formula of magnetic field

Where, I = current
r = distance
Put the value into the formula
For first wire
...(I)
For second wire,
The distance is 8-3.7 = 4.3 cm
...(II)
The magnetic field in both the wires,
From equation (I) and (II)



Hence, The current in second wire is 5.0 A.
Answer:
The positive velocity occurs the instant the coin leaves our hand. It immediately begins slowing up until its upward velocity becomes zero at the maximum height.
Explanation:
hope helps ohjieun and jannatparia
When the current flow ceases, the magnetic flow also decreases
Answer:
the answer is A.) -1 * 10^3[N]
Explanation:
The solution consists of two steps, the first step is using the following kinematic equation:
![v=v_{i} +a*t\\where:\\v=final velocity [m/s]\\v_{i}=initial velocity [m/s]\\a=acceleration[m/^2]\\t=time[s]\\](https://tex.z-dn.net/?f=v%3Dv_%7Bi%7D%20%2Ba%2At%5C%5Cwhere%3A%5C%5Cv%3Dfinal%20velocity%20%5Bm%2Fs%5D%5C%5Cv_%7Bi%7D%3Dinitial%20velocity%20%5Bm%2Fs%5D%5C%5Ca%3Dacceleration%5Bm%2F%5E2%5D%5C%5Ct%3Dtime%5Bs%5D%5C%5C)
The initial velocity is 10 [m/s], and the final velocity is zero because the car stops in 0.5[s].
Replacing:
![0=10+a*(0.5)\\a=-20[m/s^2]](https://tex.z-dn.net/?f=0%3D10%2Ba%2A%280.5%29%5C%5Ca%3D-20%5Bm%2Fs%5E2%5D)
Now in the second part, we need to use the second law of Newton, this law relates the forces with the acceleration of a body.
In the moment when the car stops suddenly the driver will feel the force of the seatbelt acting in the opposite direction of the movement.
![F=m*a\\F=50[kg]*(-20[m/s^2])\\units\[kg]*[m/s^2]=[N]\\F=-1000[N] or -1*10^{3} [N]](https://tex.z-dn.net/?f=F%3Dm%2Aa%5C%5CF%3D50%5Bkg%5D%2A%28-20%5Bm%2Fs%5E2%5D%29%5C%5Cunits%5C%5Bkg%5D%2A%5Bm%2Fs%5E2%5D%3D%5BN%5D%5C%5CF%3D-1000%5BN%5D%20or%20-1%2A10%5E%7B3%7D%20%5BN%5D)
The minus sign means that the force is acting in the opposite direction of the movement.
Answer:
I think it is pulling the sled off the ice covered back yard.