A 1.5 kg bird is gliding at a height of 12 m with a speed of 3.8m/s. The kinetic energy of the bird is 10.83 joules.
Explanation:
Kinetic energy can be defined as,The kinetic energy (KE) of an object is the energy that the object possesses due to its motion.
The Kinetic energy can be calculated by using formula,
Kinetic Energy: KE = 1/2 (mv 2)
Where, m = Mass, v = Velocity.
Here in this case the bird mass is 1.5kg and is gliding with velocity 3.8m/s
hence, KE= 1/2*(1.5)×(3.8)^2
=0.5×1.5×3.8×3.8
=10.83Joules
Answer:
A) F_g = 26284.48 N
B) v = 7404.18 m/s
C) E = 19.19 × 10^(10) J
Explanation:
We are given;
Mass of satellite; m = 3500 kg
Mass of the earth; M = 6 x 10²⁴ Kg
Earth circular orbit radius; R = 7.3 x 10⁶ m
A) Formula for the gravitational force is;
F_g = GmM/r²
Where G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²
Plugging in the relevant values, we have;
F_g = (6.67 × 10^(-11) × 3500 × 6 x 10²⁴)/(7.3 x 10⁶)²
F_g = 26284.48 N
B) From the momentum principle, we have that the gravitational force is equal to the centripetal force.
Thus;
GmM/r² = mv²/r
Making v th subject, we have;
v = √(GM/r)
Plugging in the relevant values;
v = √(6.67 × 10^(-11) × 6 x 10²⁴)/(7.3 x 10⁶))
v = 7404.18 m/s
C) From the energy principle, the minimum amount of work is given by;
E = (GmM/r) - ½mv²
Plugging in the relevant values;
E = [(6.67 × 10^(-11) × 3500 × 6 × 10²⁴)/(7.3 x 10⁶)] - (½ × 3500 × 7404.18)
E = 19.19 × 10^(10) J
Answer:
Explanation:
Ask a question that can be answered by making observations.
If the pressure above a solution containing a gas solute is reduced, the limit of the gas's solubility will decrease.
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC