This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
<span> U = (1/2)kx^2
</span><span> U = (1/2)(5.3)(3.62-2.60)^2
</span> U = <span>
<span>2.75706 </span></span>J
Since there is no friction between the ladder and the wall, there can be no vertical force component. That's the tricky part ;)
So to find the weight, divide the 100N <em>normal</em> force by earths gravitational acceleration, 9.8m/s^2

Then;
Draw an arrow at the base of the ladder pointing towards the wall with a value of 30N, to show the frictional force.
Answer:
this is what popped up when I searched it up:In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes.
Explanation:
(a) The angular acceleration of the wheel is given by

where

and

are the initial and final angular speed of the wheel, and t the time.
In our problem, the initial angular speed is zero (the wheel starts from rest), so the angular acceleration is

(b) The wheel is moving by uniformly rotational accelerated motion, so the angle it covered after a time t is given by

where

is the initial angular speed. So, the angle covered after a time t=3.07 s is