Answer:
option (a) 0.61 s
Explanation:
Given;
Time taken by the ball to reach the ground = 0.50 s
Let us first calculate the distance through which the ball falls on the ground
from the Newton's equation of motion, we have

where,
s is the distance
a is the acceleration
t is the time
here it is the case of free fall
thus, a = g = acceleration due to gravity
u = initial speed of the ball = 0
on substituting the values, we get

or
s = 1.225 m
Now,
when the elevator is moving up with speed of 1.0 m/s
the initial speed of the ball = -1.0 m/s (as the elevator is moving in upward direction)
thus , we have

or

or
4.9t^2 - t - 1.225 = 0
or
t = 0.612 s
hence, the correct answer is option (a) 0.61 s
v = speed of car = 90 km/h
u = speed of truck = 50 km/h
d = initial separation distance = 100 m = 0.1 km
They meet at time t such that
vt = d + ut
t(v - u) = d
t = d/(v - u) = (0.1 km) / [(90 - 50) km/h] = 0.0025 hours
The amount of extra electrons present on the negative surface is
57.2 x
.
Distance =1.6 cm
Side = 24 cm
Electric field = 18000 N/C
Calculating the capacitance in the metal plates is necessary.
Using the capacitance formula

Putting the value
C = 8.85 x
x (24 x 
/1.6 x 
C = 0.318 x
F
<h3>Calculation of potential</h3>
V = Ed
V = 18000 x 1.6 x
V
V = 288 V
<h3>Calculation of charge</h3>
Q = CV
Q = 0.318 x
x 288
Q = 91.54 x
C
Charge on the both the plates
Q = +91.54 x 
Q = - 91.54 x 
Calculation of excess electrons on the negative surface:
n = q/e
n = 91.54 x
/ 1.6 x 
n = 57.2 x
electrons
Hence, the number of excess electrons on the negative surface is
57.2 x
.
Learn more about capacitance here:
brainly.com/question/14746225
#SPJ4
Answer:
Explanation:
this is what i know so far ( some might be incorrect ) , but hope some of this helps!