Complete Question
A flywheel in a motor is spinning at 510 rpm when a power failure suddenly occurs. The flywheel has mass 40.0 kg and diameter 75.0 cm . The power is off for 40.0 s , and during this time the flywheel slows down uniformly due to friction in its axle bearings. During the time the power is off, the flywheel makes 210 complete revolutions. At what rate is the flywheel spinning when the power comes back on(in rpm)? How long after the beginning of the power failure would it have taken the flywheel to stop if the power had not come back on, and how many revolutions would the wheel have made during this time?
Answer:

Explanation:
From the question we are told that:
Angular velocity 
Mass 
Diameter d 
Off Time 
Oscillation at Power off 
Generally the equation for Angular displacement is mathematically given by




Generally the equation for Time to come to rest is mathematically given by



Therefore Angular displacement is


<u><em>Developed countries will see a decrease in natural resources, because their population will decrease.</em></u>
30 minutes I am not sure about that
Answer:
1050 kg
Explanation:
The formula for kinetic energy is:
KE (kinetic energy) = 1/2 × m × v² where <em>m</em> is the <em>mass in kg </em>and <em>v</em> is the velocity or <em>speed</em> of the object <em>in m/s</em>.
We can now substitute the values we know into this equation.
KE = 472 500 J and v = 30 m/s:
472 500 = 1/2 × m × 30²
Next, we can rearrange the equation to make m the subject and solve for m:
m = 472 500 ÷ (1/2 × 30²)
m = 472 500 ÷ 450
m = 1050 kg
Hope this helps!