Answer:
= 17º C
Explanation:
This is a calorimetry problem, where heat is yielded by liquid water, this heat is used first to melt all ice, let's look for the necessary heat (Q1)
Let's reduce the magnitudes to the SI system
Ice m = 80.0 g (1 kg / 1000 g) = 0.080 kg
L = 3.33 105 J / kg
Water M = 860 g = 0.860 kg
= 4186 J / kg ºC
Q₁ = m L
Q₁ = 0.080 3.33 10⁵
Q₁ = 2,664 10⁴ J
Now let's see what this liquid water temperature is when this heat is released
Q = M
ΔT = M
(T₀₁ -
)
Q₁ = Q
= T₀₁ - Q / M ce
= 26.0 - 2,664 10⁴ / (0.860 4186)
= 26.0 - 7.40
= 18.6 ° C
The initial temperature of water that has just melted is T₀₂ = 0ª
The initial temperature of the liquid water is T₀₁= 18.6
m
+ M
= M
T₀₁ - m
T₀₂o2
= (M To1 - m To2) / (m + M)
= (0.860 18.6 - 0.080 0) / (0.080 + 0.860)
= 17º C
gg
The answer for this question would be choice "<span>B. The average annual dose of background radiation is 250 times smaller than the dose linked to increased cancer risk."
You only have to compare 4.0 x 10^-4 and 1.0 x 10^-1. And if you can observe carefully, when you try to multiply the average annual dose of background radiation by 250, you would get 0.1 which is equivalent to the amount of annual dose linked to increased cancer risk. Therefore, the answer is B.</span>
Answer:
B
Explanation:
This happens because adding salt to the water decreases Its density. When the density of the water matches that of the egg, the egg becomes neutrally buoyant and floats.
The weight of the egg becomes equal to the upward buoyant force by the water on to the egg and hence, the egg floats.
Answer:
Photoelectric effect
Explanation:
In the photoelectric effect, when an x-ray strikes on a metal surface, the energy is completely absorbed by the metal. If the energy would be equal to or more than work function of metal, electron ejects out. The kinetic energy of the electron which is ejected depends on the energy of the incident radiation and work function of the metal.