Answer:
Explanation:
As temperature is constant , we shall apply Boyle's law
P₁V₁ = P₂V₂
P₁ = pressure at depth of 10 m
= P + hdg , h = 10 , d = 10³ , g = 10
P is atmospheric pressure which is 10⁵ Pa
P₁ = 10⁵ + 10 x 10³ x 10
= 2 x 10⁵
applying the formula
2 x 10⁵ x 6 = 10⁵ x v
v = 2 x 6 = 12 L
volume will be doubled at the surface .
B )
warming of air at the surface will increase the volume of air in her lungs so so she will need more lung capacity .
C )
The rms value of a gas depends upon the temperature of the gas . As temperature of the gas is constant , the rms value of the gas particles will remain constant when she goes to the surface .
Answer:

Explanation:
The resistance increases linearly with the temperature - so we can write:

where
is the change in resistance
k is the coefficient of proportionality
is the variation of temperature
In the first part of the problem, we have


So the coefficient of proportionality is

When the resistance is
, the change in resistance with respect to the resistance at zero degrees is

So we can find the change in temperature as:

So the new temperature is

Answer:
Part 1
20 N
Part 2
0.4 m/s²
Part 3
4 m/s
Explanation:
The force which pulls the sled right = 50 N
The friction force exterted towards left by the snow = -30 N
The mass of the sled = 50 kg
Part 1
The sum of the forces on the sled, F = 50 N + (-30) N = 20 N
Part 2
The acceleration of the sled is given as follows;
F = m·a
Where;
m = The mass of the sled
a = The accelertion
a = F/m
∴ a = (20 N)/(50 kg) = 0.4 m/s²
The acceleration of the sled, a = 0.4 m/s²
Part 3
The initial velocity of the sled, u = 2 m/s
The kinematic equation of motion to determine the speed of the sled is v = u + a·t
The speed, <em>v</em>, of the sled after t = 5 seconds is therefore;
v = 2 m/s + 0.4 m/s² × 5 s = 4 m/s.