Answer:
The recoil speed of Astronaut A is 0.26 m/s.
Explanation:
Given that,
Mass of astronaut A, 
Mass of astronaut B, 
Astronaut A pushes B away, with B attaining a final speed of 0.4, 
We need to find the recoil speed of astronaut A. The momentum remains conserved here. Using the law of conservation of linear momentum as :

So, the recoil speed of Astronaut A is 0.26 m/s.
Answer:
add more coils
Explanation:
this increases the strength of the magnetic field
The gravitational force between the objects A. It would increase.
Explanation:
The magnitude of the gravitational force between two objects is given by:

where
G is the gravitational constant
are the masses of the two objects
r is the separation between the objects
In this problem, we are told that one of the object (the one on the right) gains mass: this means that, for instance, the value of
increases. We can see from the equation that the gravitational force is directly proportional to the masses: therefore, if one of the masses increases (while the distance between the two objects remains constant), it means that the force also increases.
Therefore, the correct answer is
A. It would increase.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer: Addition polymerization & Condensation polymerization
Answer:
Yes
Explanation:
Any transparent surface in practical is neither a perfect absorber of electromagnetic waves neither a perfect reflector. Generally all the transparent surfaces reflect some amount of irradiation and the other parts are absorbed and transmitted.
<u>That is given by as relation:</u>

where:
absorptivity which is defined as the ratio of the absorbed radiation to the total irradiation
reflectivity is defined as the ratio of reflected radiation to the total irradiation
transmittivity is defined as the ratio of total transmitted radiation to the total irradiation