1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jenyasd209 [6]
3 years ago
10

Can anyone tell me the ans of this question with steps of the solution

Physics
2 answers:
ArbitrLikvidat [17]3 years ago
4 0

Answer:

64m

Explanation:

100sec=160×0.8

100sec=128m

50sec=less

=50/100×128m

=0.5×128

=64m

gavmur [86]3 years ago
3 0

Answer:

A

Explanation:

100s:160 paces

50s: 80 paces

80*0.80= 64

You might be interested in
Which of the following best explains why lightning occurs?
Flura [38]

Answer:

God strikes lightening.

7 0
3 years ago
Read 2 more answers
John pushes forward on a car with a force of 125n while bob pushes backward on the car with a force of 225n. what is the net for
Pie

Answer:

100N

Explanation:

because 225-125= 100

5 0
3 years ago
Read 2 more answers
What data will the simulation provide about your design? You will also need a control (something you don’t change) that you can
Ksenya-84 [330]

Answer:

yes you will need a control

Explanation: all i know is that you need a control i don't know how to set it up lol sorry

6 0
2 years ago
Determine the magnitude of the average friction force exerted on the collar when the velocity of the collar at c is 3.39 m/s and
djverab [1.8K]

The magnitude of the average friction force exerted on the collar (F)=  8.641 N

<h3>How can we calculate the magnitude of the average friction force exerted on the collar?</h3>

To calculate the magnitude of the average friction force exerted on the collar we are using the formula,

\frac{1}{2} k(x^2_f - x^2_i ) + F\times y + \frac{1}{2} m v^{2} _{c}  = mgy

Here we are given,

k = The spring has a spring constant.

= 25.5 N/m.

x_f = Final length of the spring .

= \sqrt{1.25^2+1.8^2}  -0.60

= 1.591 m

x_i= The initial length of the spring.

= 1.25−0.60

=0.65 m

y=The collar then travels downward a distance.

=  1.80 m.

m= The mass of the collar.

=3.55 kg

v_c = the velocity of the collar.

= 3.39 m/s.

g = The acceleration due to gravity.

= 9.81 m/s²

We have to calculate the magnitude of the average friction force exerted on the collar = F

Now we put the known values in the above equation, we get;

\frac{1}{2} k(x^2_f - x^2_i ) + F\times y + \frac{1}{2} m v^{2} _{c}  = mgy

Or, \frac{1}{2} \times 25.5 \times((1.591)^2 - (0.65)^2 ) + F\times 1.80 + \frac{1}{2}\times 3.55\times (3.39)^{2}  = 3.55\times 9.81\times 1.80

Or, F= 8.641 N

From the above calculation we can conclude that,

The magnitude of the average friction force exerted on the collar (F)=  8.641 N

Learn more about friction:

brainly.com/question/24338873

#SPJ4

Disclaimer: This question is incomplete in the portal. Here is the complete question.

Question:

The 3.55 kg collar shown below is attached to a spring and released from rest at A. The collar then travels downward a distance of y = 1.80 m. The spring has a spring constant of k = 25.5 N/m. The distance a is given as 1.25 m. The datum for gravitational potential energy is set at the horizontal line through A and B. Determine the magnitude of the average friction force exerted on the collar when the velocity of the collar at c is 3.39 m/s and the spring has an unstretched length of 0.60 m .

6 0
2 years ago
Even when the head is held erect, as in the figure below, its center of mass is not directly over the principal point of support
alexandr1967 [171]

We are asked to determine the force required by the neck muscle in order to keep the head in equilibrium. To do that we will add the torques produced by the muscle force and the weight of the head. We will use torque in the clockwise direction to be negative, therefore, we have:

\Sigma T=r_{M\perp}(F_M)-r_{W\perp}(W)

Since we want to determine the forces when the system is at equilibrium this means that the total sum of torque is zero:

r_{M\perp}(F_M)-r_{W\perp}(W)=0

Now, we solve for the force of the muscle. First, we add the torque of the weight to both sides:

r_{M\perp}(F_M)=r_{W\perp}(W)

Now, we divide by the distance of the muscle:

(F_M)=\frac{r_{W\perp}(W)}{r_{M\perp}}

Now, we substitute the values:

F_M=\frac{(2.4cm)(50N)}{5.1cm}

Now, we solve the operations:

F_M=23.53N

Therefore, the force exerted by the muscles is 23.53 Newtons.

Part B. To determine the force on the pivot we will add the forces we add the vertical forces:

\Sigma F_v=F_j-F_M-W

Since there is no vertical movement the sum of vertical forces is zero:

F_j-F_M-W=0

Now, we add the force of the muscle and the weight to both sides to solve for the force on the pivot:

F_j=F_M+W

Now, we plug in the values:

F_j=23.53N+50N

Solving the operations:

F_j=73.53N

Therefore, the force is 73.53 Newtons.

8 0
1 year ago
Other questions:
  • If you're swimming underwater and knock two rocks together, you will hear a very loud noise. But if your friend above the water
    7·1 answer
  • a particle with charge Q is on the y axis a distance a from the origin and a particle with charge qi is on the x axis at a dista
    5·1 answer
  • What type of air mass brings a hurricane?
    12·1 answer
  • A plane flies at 200 m/s, emitting a 600 Hz roar. Assuming a 340 m/s speed of sound, what will be the frequency of sound waves h
    11·1 answer
  • Help! 27 degrees Celsius - What is the temperature in Fahrenheit? please help i will make you a cool thing on the computer ( gra
    10·1 answer
  • ILL GIVE BRAINLIEST.
    14·1 answer
  • Un coche que lleva una velocidad constante de 90 km/hora durante 2 horas ¿Cuánto espacio recorre?Si encuentra un obstáculo en la
    14·1 answer
  • Please help extremely important!
    5·1 answer
  • Stat the law of conservation of momentum<br>​
    8·1 answer
  • 11 An unstretched spring is 12,0 cm long. A load of 5.0N stretches it to 15.0cm. How long will it be under a load
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!