Explanation:
The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation p = ρgh, where g is the gravitational acceleration
Answer
Together with glycolysis, The Krebs cycle, and the electron transport chain release about 36 molecules of ATP per molecule of glucose.The Krebs cycle uses the two molecules of pyruvic acid formed in glycolysis and yields high-energy molecules of NADH and flavin adenine dinucleotide (FADH2), as well as some ATP. The electron transport chain forms a proton gradient across the inner mitochondrial membrane, which drives the synthesis of ATP
Answer:
0.027m
Explanation:
the bolt loses contact with the piston only when acceleration due to gravity equals acceleration of piston
ω² * A = g where ω is angular velocity, A amplitude, g acceleration due to gravity
ω is given by 2πf, ω² is 4π²f²
A= g/4π²f² depending on the value of g used either 10m/s² or 9.8m/s²,
i used 10m/s² in this answer
Answer:
6 days.
Explanation:
From radioactivity, The expression for half life is given as,
R/R' = 2⁽ᵃ/ᵇ)................... Equation 1
Where R = original mass of the radioactive substance, R' = Remaining mass of the radioactive substance after decay, a = Total time taken to decay, b = half life.
Given: R = 80 g, R' = 10 g, b = 2 days.
Substitute into equation 1
80/10 = 2⁽ᵃ/²⁾
8 = 2⁽ᵃ/²⁾
2³ = 2⁽ᵃ/²)
Equating the base and solving for a
3 = a/2
a = 2×3
a = 6 days.
Answer:
If the canoe heads upstream the speed is zero. And directly across the river is 8.48 [km/h] towards southeast
Explanation:
When the canoe moves upstream, it is moving in the opposite direction of the normal river current. Since the velocities are vector (magnitude and direction) we can sum each vector:
Vr = velocity of the river = 6[km/h}
Vc = velocity of the canoe = -6 [km/h]
We take the direction of the river as positive, therefore other velocity in the opposite direction will be negative.
Vt = Vr + Vc = 6 - 6 = 0 [km/h]
For the second question, we need to make a sketch of the canoe and we are watching this movement at a high elevation. So let's say that the canoe is located in point 0 where it is located one of the river's borders.
So we are having one movement to the right (x-direction). And the movement of the river to the south ( - y-direction).
Since the velocities are vector we can sum each vector, so using the Pythagoras theorem we have:
![Vt = \sqrt{(6)^{2} +(-6)^{2} } \\Vt=8.48[km/h]](https://tex.z-dn.net/?f=Vt%20%3D%20%5Csqrt%7B%286%29%5E%7B2%7D%20%2B%28-6%29%5E%7B2%7D%20%7D%20%5C%5CVt%3D8.48%5Bkm%2Fh%5D)