Answer:
D
Explanation:
Cells are the smallest unit of organizaiton, followed by tissues, organs, organ systems, and then organisms themselves.
Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have

Answer
Applying Wein's displacement

1) for sun T = 5800 K


2) for tungsten T = 2500 K


3) for heated metal T = 1500 K


4) for human skin T = 305 K


5) for cryogenically cooled metal T = 60 K


range of different spectrum
UV ----0.01-0.4
visible----0.4-0.7
infrared------0.7-100
for sun T = 5800
λ 0.01 0.4 0.7 100
λT 58 2320 4060 5.8 x 10⁵
F 0 0.125 0.491 1
fractions
for UV = 0.125
for visible = 0.441-0.125 = 0.366
for infrared = 1 -0.491 = 0.509
Answer:
C) Use two batteries instead of one.
Explanation:
-Strength of an electromagnet depends on the electrical current which flows through the wires.
-Two batteries have a higher current than one and thus higher strength in the electromagnet.