Answer:
The acceleration is 2.2 m/s^2
Explanation:
In the attached image, we can see the free body diagram. And using the second law of Newton it will be possible to find the acceleration of the box.
1. HP is the output horsepower rating of an engine, while Brake horse power is the input brake horsepower of an engine. ... Brake horse power is the measurement of an engine's power without any power losses, while HP is less the power losses Brake horse power
By ideal gas theory, cylinder b has the higher temperature.
We need to know about the ideal gas theory to solve this problem. The ideal gas can be represented by
P . V = n . R . T
where P is the pressure, V is volume, n is the number of molecules, R is the ideal gas constant and T is temperature.
From the question above, we know that
Pa = Pb = P
na = 3nb
Find the temperature of the cylinder a
P . V = n . R . Ta
Ta = P . V /( na . R )
Substitute na
Ta = P . V /( (3nb) . R )
Ta = (1/3) x (P . V /( (nb . R ))
Find the temperature of the cylinder b
P . V = n . R . Tb
Tb = P . V /( nb . R )
The cylinder a temperature is 3 times smaller than the temperature in cylinder b.
Find more on ideal gas at: brainly.com/question/25290815
#SPJ4
Answer:
F=5.7×10⁻⁶
Explanation:
Not knowing a formula outright, I decided to follow the units of some relationships I did know. Radiation pressure is defined as force per area and also intensity divided by velocity (the speed of light here of course). Breaking intensity down into power per area and isolating force gave me the relationship F=(Power/Velocity),where power is given and the velocity is a constant.
My work is in the attachment, where I double checked the units too, comment with any questions.