1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sphinxa [80]
3 years ago
5

What happens to kinetic energy when you increase the mass?

Physics
1 answer:
Rus_ich [418]3 years ago
5 0

Increasing mass increases kinetic energy. This can be seen in the equation KE = 1/2 (m) (v)^2

If you found this helpful, please brainliest me!

You might be interested in
What is the magnitude of the Box's Acceleration?​
mojhsa [17]

The Box's Acceleration : g sin θ

<h3>Further explanation  </h3>

Newton's 2nd law explains that the acceleration produced by the resultant force on an object is proportional and in line with the resultant force and inversely proportional to the mass of the object  

∑F = m. a  

F = force, N  

m = mass = kg  

a = acceleration due to gravity, m / s²  

We plot the forces acting on the block (picture attached) according to the y-axis and the x-axis.

Because the motion of the block is in the same direction as the x-axis, ignoring the friction force with the inclined plane, then

\tt \sum F_x=m.a\\\\W.sin\theta=m.a\\\\mgsin\theta=m.a\\\\a=gsin\thet\theta

4 0
3 years ago
A Ferris wheel starts at rest and builds up to a final angular speed of 0.70 rad/s while rotating through an angular displacemen
PilotLPTM [1.2K]

Answer:

The average angular acceleration is 0.05 radians per square second.

Explanation:

Let suppose that Ferris wheel accelerates at constant rate, the angular acceleration as a function of change in angular position and the squared final and initial angular velocities can be clear from the following expression:

\omega^{2} = \omega_{o}^{2} + 2 \cdot \alpha\cdot (\theta-\theta_{o})

Where:

\omega_{o}, \omega - Initial and final angular velocities, measured in radians per second.

\alpha - Angular acceleration, measured in radians per square second.

\theta_{o}, \theta - Initial and final angular position, measured in radians.

Then,

\alpha = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot (\theta-\theta_{o})}

Given that \omega_{o} = 0\,\frac{rad}{s}, \omega = 0.70\,\frac{rad}{s} and \theta-\theta_{o} = 4.9\,rad, the angular acceleration is:

\alpha = \frac{\left(0.70\,\frac{rad}{s} \right)^{2}-\left(0\,\frac{rad}{s} \right)^{2}}{2\cdot \left(4.9\,rad\right)}

\alpha = 0.05\,\frac{rad}{s^{2}}

Now, the time needed to accelerate the Ferris wheel uniformly is described by this kinematic equation:

\omega = \omega_{o} + \alpha \cdot t

Where t is the time measured in seconds.

The time is cleared and obtain after replacing every value:

t = \frac{\omega-\omega_{o}}{\alpha}

If \omega_{o} = 0\,\frac{rad}{s},  \omega = 0.70\,\frac{rad}{s} and \alpha = 0.05\,\frac{rad}{s^{2}}, the required time is:

t = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{0.05\,\frac{rad}{s^{2}} }

t = 14\,s

Average angular acceleration is obtained by dividing the difference between final and initial angular velocities by the time found in the previous step. That is:

\bar \alpha = \frac{\omega-\omega_{o}}{t}

If \omega_{o} = 0\,\frac{rad}{s},  \omega = 0.70\,\frac{rad}{s} and t = 14\,s, the average angular acceleration is:

\bar \alpha = \frac{0.70\,\frac{rad}{s} - 0\,\frac{rad}{s} }{14\,s}

\bar \alpha = 0.05\,\frac{rad}{s^{2}}

The average angular acceleration is 0.05 radians per square second.

4 0
3 years ago
A car passes point “A” and then 120 meters later. It’s velocity was measured 21 m/s. If it’s acceleration was constant at 0.853
Norma-Jean [14]

Recall that

{v_f}^2-{v_i}^2=2a\Delta x

where v_i and v_f are the initial and final velocities, respecitvely; a is the acceleration; and \Delta x is the change in position.

So we have

\left(21\dfrac{\rm m}{\rm s}\right)^2-{v_i}^2=2\left(0.853\dfrac{\rm m}{\mathrm s^2}\right)(120\,\mathrm m)

\implies v_i\approx\boxed{15.4\dfrac{\rm m}{\rm s}}

(Normally, this equation has two solutions, but we omit the negative one because the car is moving in one direction.)

7 0
3 years ago
Name the 2 types of tissue that form your skin?
QveST [7]

Answer:

Epithelial tissue and Muscle tissue

Explanation:

7 0
3 years ago
A football player runs 20 meters North of a football field, and then 15 meters East. The total motion lasted 15 seconds. What wa
vlada-n [284]
Given:
1st run: 20 meters North
2nd run: 15 meters East
time: 15 seconds

Average speed = total distance covered / total time taken
Ave. Speed = (20m + 15m) / 15s
Ave. Speed = 35m / 15s
Ave. Speed = 2 1/3  meters per second
4 0
3 years ago
Other questions:
  • An experiment is conducted in which red light is diffracted through a single slit. part a listed below are alterations made, one
    8·2 answers
  • In which tool are uranium atoms split to make electricity? A. turbine B. generator C. reactor D. condenser
    11·1 answer
  • Determine the centripetal force on a vehicle rounding a circular curve with a radius of 80 m at a constant speed of 90 km/h if t
    12·1 answer
  • What are some ways that light can be controlled and what does it do to the light
    15·1 answer
  • A particle moving along the x-axis has its velocity described by the function vx =2t2m/s, where t is in s. its initial position
    10·1 answer
  • Given: an 802.11 wlan transmitter that emits a 50 mw signal is connected to a cable with 3 db loss. the cable is connected to an
    10·1 answer
  • How many bonds can a carbon atom form
    11·2 answers
  • A 66.0-kg boy and his 45.0-kg sister, both wearing roller blades, face each other at rest. The girl pushes the boy hard, sending
    11·1 answer
  • The number of particles in a gas system inversely affects _____ and directly affects _____.
    10·1 answer
  • You carry a 20 N bag of dog food up a 6.0 m flight of stairs. How much work was done?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!