<h3>
Answer:</h3>
0.012 dekameters (dkm)
<h3>
Explanation:</h3>
<u>We are given;</u>
Required to identify the measurements that is not equivalent to 120 cm.
- Centimeters are units that are used to measure length together with other units such as kilometers(km), meters (m), millimeters (mm), dekameters (dkm), etc.
- These units can be inter-converted to one another using suitable conversion factors.
- To do this, we are going to have a table showing the suitable conversion factor from one unit to another.
Kilometer (km)
10
Decimeter (Dm)
10
Hectometer (Hm)\
10
Meter (m)
10
Dekameter (dkm)
10
Centimeter (cm)
10
Millimeter (mm)
Therefore;
To convert cm to km
Conversion factor is 10^5 cm/km
Thus;
120 cm = 120 cm ÷ 10^5 cm/km
= 0.0012 km
To convert cm to dkm
Conversion factor is 10 cm/dkm
Therefore,
120 cm = 120 cm ÷ 10 cm/dkm
= 12 dkm
To convert cm to m
The suitable conversion factor is 10^2 cm/m
Thus,
120 cm = 120 cm ÷ 10^2 cm/m
= 1.2 m
To convert cm to mm
Suitable conversion factor is 10 mm/cm
Therefore;
120 cm = 120 cm × 10 mm/cm
= 1200 mm
Therefore, the measurement that is not equal to 120 cm is 0.012 dkm
Answer:
1.2×10²³ atoms.
Explanation:
Data obtained from the question include:
Mole of propanone = 0.20 mole
Number of atoms of propanone =.?
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.022×10²³ atoms.
This implies that 1 mole of propanone also contains 6.022×10²³ atoms.
Thus, we can obtain the number of atoms in 0.20 mole of propanone as illustrated below:
1 mole of propanone contains 6.022×10²³ atoms.
Therefore, 0.20 mole of propanone will contain = 0.2 × 6.022×10²³ = 1.2×10²³ atoms.
Thus, 0.20 mole of propanone contain
1.2×10²³ atoms.
<span>rutherfordium element # 104</span>
Answer: The concentrations of A , B , and C at equilibrium are 0.1583 M, 0.2583 M, and 0.1417 M.
Explanation:
The reaction equation is as follows.

Initial : 0.3 0.4 0
Change: -x -x x
Equilbm: (0.3 - x) (0.4 - x) x
We know that, relation between standard free energy and equilibrium constant is as follows.

Putting the given values into the above formula as follows.


x = 0.1417
Hence, at equilibrium
= 0.1583 M
= 0.2583 M