Based on the information I would assume B, 73 degrees...
It shouldn't be A, 4 minutes on the burner should increase the temperature.
If it were D, it would be beyond boiling, and water takes a decent amount of energy to heat, D should be all vapor.
Same logic for C, it's basically almost boiling.
I would say 73 degrees seems most reasonable for 4 minutes.
4. 2Li + 2H2O -> 2LiOH + H2
5. C6H12O6 + 6O2 -> 6CO2 + 6H2O
6. Zn + 2HCl -> ZnCl2 + H2
9. H2SO4 + Pb -> PbSO4 + H2
10. Ca(OH)2 + NH4Cl -> NH4 + CaCl2 + H2O
thats all i know
The heat released by the substance in the calorimeter is equal to the heat absorbed by water which results to the decrease and increase in temperature, respectively.
We use m Cp ΔT to balance the heat involved
(m Cp ΔT) subs in calorimeter = <span>(m Cp ΔT) water
</span>125 g * Cp * (97.0-23.5 ) C = 250 g *(4.18 J/C g)* (23.5-20)
Cp = 0.398 J/Cg
Answer is B
Answer:
B. CA, 14
Explanation:
Atoms of elements contain small particles known as electrons, neutrons, and protons. The nucleus of an atom is made up of neutrons and protons which are at the center of the atom. Electrons on the other hand surrounds the nucleus. Electron has negative charge while proton has a positive charge. The number of neutrons is equivalent to the number of protons . In addition, the number of protons is equal to mass number minus the number of electrons.
For the compound
, it can be broken down into
and
. Its ion has a mass of 34 and 18 electrons which means it has already lost 2 electrons.
Therefore:
For the given element, the number of electrons is 18+2 = 20 electrons.
The number of protons = 34 - 20 = 14.
And the number of neutrons is 14.
Only option B has the correct answer.
<span>Answer: D. They all have the same number of electrons in the electron cloud</span>